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1. INTRODUCTION 

For many years engineers and scientists have been interested in predicting un­

steady flow phenomena using numerical techniques. Strictly speaking, nearly all flows 

possess more or less unsteadiness. Steady state flows are rarely found in nature and, 

even with a well-conttolled device in the laboratory, they are still quite difficult to 

achieve over a long period of time. Of course, for practical engineering purposes, 

the flow pattern can often be assumed to be steady in a time-averaged sense. How­

ever, for certain types of flows, steady state solutions may not exist at all, and only 

transient solutions can be obtained. The flow pattern inside the cylinder of an inter­

nal combustion engine, the vortex shedding flow behind a blunt body and the flow 

pattern related to free surface motion [1], [2], [3] to name a few, are some typical 

unsteady flows of practical interest. On the other hand, an understanding of the 

basic nature of unsteady fluid flows in various applications has always been the goal 

of many researchers. 

In the early days, due to the limitations of computational tools and the lack of 

efficient numerical algorithms, one could only hope to solve a simplified set of the 

Navier-Stokes equations to obtain some limited but frequently useful flow informa­

tion. Although numerical results from the simplified equations could also contribute 

to design work to some extent, wind tunnel test results played a major role in most 
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of the design work for both internal and external configurations at that time. This 

trend has gradually changed in the past two decades due to increases in computa­

tional efficiency in both the solution algorithm and computer hardware and decreas­

ing costs for computational studies relative to experimental studies. The emergence 

of supercomputers in the late 1970s marked a new era in the advance of computer 

technology. Today the wide spread availability of high speed supercomputers with a 

large internal memory and multiprocessor or vector processor architectures, such as 

Cray series of computers, is certainly a requirement for performing a simulation of 

complicated three-dimensional unsteady flows. In addition, high speed workstations, 

which emerged on the market only in the past several years provide an alternate 

means for obtaining certain unsteady flow calculations at a fairly low cost. 

Although truly three-dimensional unsteady viscous flow simulations are still very 

demanding in terms of computer resources, they can be achieved nowadays with the 

use of supercomputers and high speed workstations. In fact, some three-dimensional 

unsteady viscous flow simulations have been reported in the literature [4], [5], [6] 

recently, for the full space shuttle launch configuration including the solid rocket 

booster and external fuel tank. However, because the enormous amounts of computer 

time and memory needed for three-dimensional viscous calculations, a definite need 

still exists for improved numerical algorithms for these flows. The present research 

has been devoted to developing a numerical solution algorithm to efficiently solve 

unsteady flow problems. Both compressible and incompressible flows are considered. 

Three-dimensional liquid sloshing flows are an application of major interest in the 

present study. 

In the following several sections, some pertinent literature related to the present 
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research is reviewed. This is followed by a section on the scope of this study. Finally, 

this chapter is concluded with an outline of the thesis. 

1.1 Overview 

1.1.1 Two-dimensional compressible flows 

Over the past two decades, a number of different finite-difference schemes have 

been proposed to solve the Navier Stokes equations [7]. Traditionally, they have been 

classified as methods for either compressible or incompressible flows. Most of the for­

mulations for compressible flows have utilized conservative variables [8], [9], [10] which 

include density, instead of pressure, as a primary variable, and the equations have 

generally been cast in a strong conservation law form and solved in a coupled (si­

multaneously) manner. Among these compressible numerical formulations, the most 

successful methods are based on time-marching, shock-capturing algorithms. Such 

formulations are advantageous in that the same solution algorithm may be used for 

both steady and unsteady flow calculations. By using a strong conservation law form 

of the governing equations, flow discontinuities such as shock waves or contact dis­

continuities can be automatically captured as the solution develops without special 

treatment [11]. However, the recent work of Karki and Patankar [12] and Van Door-

maal et al. [13] applied the SIMPLE type [14] segregated (one variable from one 

equation at a time) solution procedure and successfully solved flows with embedded 

shocks. This approach, however, is still in an early stage of development for flows 

with shocks. 

Methods for incompressible flows, on the other hand, have employed a wider 

range of dependent variables, including derived as well as primitive, and the equations 
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have generally been solved in a segregated manner. For two-dimensional flow calcu­

lations, the derived variable approaches, e.g., streamfunction/vorticity formulations, 

require fewer unknowns to be determined than the original Navier-Stokes equations 

and satisfy the continuity equation automatically [15]. However, if pressure informa­

tion is required, an additional equation (a Poisson equation) must be solved. This 

approach becomes much less attractive in three dimensions because more equations 

must be solved for a larger number of unknowns than would be required by solving 

the original Navier-Stokes equations. This approach includes the vorticity/velocity 

formulation [16], [17] and vorticity/vector potential formulation [18]. Six equations 

are required to close the system. 

On the other hand, the primitive variable approaches for incompressible flows 

do not satisfy the continuity equation (or the so-called compatibility condition) auto­

matically and some type of correction scheme must be applied to both the pressure 

and the velocity fields to satisfy this compatibility condition as the solution develops. 

The widely used schemes of the SIMPLE family [14] are in this category. Recently, a 

new time accurate, primitive variable approach has become more and more popular 

for solving incompressible flows [19], [20], [21]. This method is known as the artificial 

compressibility method^ and was initially proposed by Chorin [22] for steady flow cal­

culations. Recent versions of this method solve the algebraic system of equations in a 

coupled manner similar to the approaches most commonly used for the compressible 

Navier-Stokes equations. This method will be discussed in more detail in the next 

section. 

Numerical methods developed for compressible flows have not been, in general, 

suitable for efficiently solving low Mach number or incompressible flows. The reasons 
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usually offered for this are : (1) roundoff error due to using density as a primary 

variable [23], [24], (2) truncation errors due to applying approximate factorization in 

multiple dimensional problems [25], and (3) a time step (or CFL number) constraint 

due to near infinite acoustic speed [7]. Issa [23] showed that when the density was 

used as a dependent variable in calculating low Mach number flows, the accuracy 

of evaluating the pressure gradients in the momentum equations was very sensitive 

to tiny variations in the density. The roundoff error due to this sensitivity to small 

variations in density sometimes can grow and dramatically slow down the convergence 

rate of the calculation. To circumvent this problem, pressure can be chosen as a 

primary variable instead of density because the variation of pressure is generally 

significant for all flow regimes. This idea has been used [26] in solving low Mach 

number steady flows by a coupled space marching procedure which involves using 

multiple sweeps to account for the upstream propagation of pressure signals. But this 

space marching procedure is only effective for flows with a dominant flow direction. 

Recently, a similar idea, although different in detail, was proposed to alleviate the 

above problems using a segregated algorithm [12]. Feng and Merkle [27] also employed 

pressure as a primary variable in a scheme that utilized a preconditioning technique 

to scale all eigenvalues of the coupled system of equations to the same order of 

magnitude in order to accelerate convergence for low Mach number steady flows. 

The approximate factorization (AF) procedure is often used for compressible 

flow calculations in multiple dimensional problems. This procedure was flrst pro­

posed by Warming and Beam [28] and has been very widely used since it splits the 

numerical solution procedure in the multiple dimensional problems into several one-

dimensional operators which permits the solution to be obtained in the domain of 
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interest one direction at a time. The advantage of doing this is that in each direction, 

the coefficient matrix becomes block tridiagonal, and the system can be solved very 

efficiently with modest computer storage. However, the error due to this factorization 

procedure becomes worse and worse as the flow Mach number becomes smaller and 

smaller [25]. Instead of utilizing the AF scheme, a strongly implicit procedure (SIP) 

proposed by Stone [29] is used in this study to solye the algebraic equations. The 

modified form of the SIP algorithm (MSIP) proposed by Schneider and Zedan [30] 

exhibits faster convergence and less sensitivity to the relaxation-type parameter of 

the method than the original SIP algorithm. The MSIP algorithm was extended to 

handle a coupled 4x4 block system in the present work. The SIP method will be 

discussed in more detail in another section in this chapter and in Chapter 4. 

There are many applications in which it would be convenient to use the same 

algorithm for Mach numbers ranging from incompressible to transonic. The search 

for an algorithm suitable for all speeds goes back at least to the work of Harlow and 

Amsden [31]. More recent work on the subject includes contributions from Karki and 

Patankar [12] and Van Doormaal et al. [13]. The main contribution of the present 

research on two-dimensional flows is to point out a solution strategy that could be 

applied to a number of difference formulations to permit efficient computation over 

a wider range of Mach numbers. The specific difference stencil used in the present 

work may not be optimum for all cases, and can clearly be improved. The form used, 

however, does serve to illustrate the advantages of the overall approach. 
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1.1.2 Three-dimensional incompressible liquid sloshing flows 

The liquid sloshing motion inside a contûner has long been of interest to engi­

neers and researchers. Liquid sloshing occurs in many important practical applica­

tions such as in oil tankers, railroad tank cars, missiles, satellites and spacecraft [32], 

[33], [34]. The major concern about the liquid sloshing motion within a container is 

that a substantial periodic force may be generated by this motion which may affect 

the stability of the moving vehicle. If the sloshing frequency is near the natural fre­

quency of the vehicle structure, resonance may increase the likelihood of structural 

damage or an instability resulting from the motion. 

The sloshing motion is usually induced by the motion of the container, which 

causes changes in the original equilibrium pressure field within the fluid. This type of 

motion usually involves the presence of a free surface which is the interface between 

the liquid and air or other type of gas. The presence of the free surface adds another 

difficulty in analysis to an already complicated fluid motion, since the free surface 

position usually is not known a priori and has to be determined as part of the 

solution. The container may undergo several different kinds of motion ranging from 

a simple linear acceleration or rotation to more complicated combinations of these. 

To conveniently analyze the motion, it is usually necessary to transform the governing 

equations to a noninertial coordinate system [35]. 

The sloshing motion of liquid is governed by the incompressible Navier-Stokes 

equations. The motion of the liquid is generally three-dimensional, time-dependent 

and sufficiently complex that no major simplification to the general equations is 

possible. The accurate simulation of such motion is a formidable problem primarily 

because of the computational resources required, and few, if any, three-dimensional 
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time-dependent simulations have been reported in the literature. 

Generally, incompressible flows have been solved successfully using both primi­

tive variables (velocity components and pressure) or derived variables such as stream-

function and vorticity as mentioned earlier. Although the methods based on derived 

variables work well in two dimensions, in three dimensions, they require the solution 

of more equations than the methods based on primitive variables. As a result, the 

methods based on derived ^^ables have not been widely used by others for solving 

complex three-dimensional flows, and were not selected for use in the present study. 

The most frequently used approaches for solving the time-dependent, incom­

pressible Navier-Stokes equations in primitive variables fall into two broad categories. 

The first is generally known as the method of fractional steps [36], [37]. In this ap­

proach, the solution is advanced one time increment in two or more steps. In the 

first step, the momentum equations are solved for an approximate velocity field that 

is generally not divergence free (may not conserve mass). In the second step, the 

pressure field which corresponds to a divergence-free velocity field is computed and 

the velocity is corrected to conserve mass. This step generally leads to a Poisson 

equation for pressure. The SIMPLE type schemes mentioned in the previous section 

belong to this category. 

The second approach is known as the artificial (or pseudo) compressibility method. 

In this method a fictitious time derivative of pressure is added to the continuity equa­

tion so that the solution of the set of conservation equations can be marched in time. 

Originally, this method was thought to be only applicable to steady flow problems. 

For these, the entire time dependence was fictitious but the solution approached the 

correct steady state solution asymptotically with time. More recently, investigators 
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[19], [20], [21] have suggested that the procedure can be made accurate with respect to 

time by considering the time-like variable appearing in the fictitious time term added 

to the continuity equation to be a pseudotime. For each physical time step, the pseu-

dotime is advanced several increments in an iterative fashion. When the variables 

no longer change with pseudotime, the fictitious time term is zero and the solution 

satisfies the correct form of the continuity equation for incompressible flows at the 

specified physical time. It is clearly desirable to keep the number of subiterations to 

a minimum in this dual time stepping procedure. 

Methods for dealing with the free surface in the simulations also fall into two 

categories: free surface "fitting" (or "tracking") and free surface "capturing". In 

surface fitting, the calculations are carried out in a transformed coordinate system 

that conforms to the shape of the free surface [1], [2], [38]. Appropriate boundary 

conditions are applied at the free surface, and the surface location changes with time 

as dictated by the velocities computed at grid points falling on the free surface. Gen­

erally, the grid points are moved after each time step as a new surface conforming grid 

is constructed. The new grid "adapts" to the changed geometry of the computational 

domain. 

With surface capturing, the free surface is located or "captured" by a computa­

tion over a larger domain that includes a fluid of much smaller density and viscosity 

fictitiously placed over the free surface. In the liquid sloshing problem, the second 

fluid would have very little influence on the motion of the denser liquid. The gov­

erning equations are solved throughout both fluids. Steep gradients in fluid density 

indicate the location of the free surface. Several variations in the surface capturing 

procedure have been reported in the literature [39]. Generally, a fixed grid is used 
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with this method although the grid could be altered between time steps to provide 

a finer grid in the neighborhood of the evolving interface. An excellent review paper 

by Floryan and Rasmussen [40] provides more than 100 references about both sur­

face "fitting" and "capturing" methods. Interested readers may refer to this review 

article. 

The present study utilizes the surface "fitting" approach for the free surface 

and the artificial compressibility method to provide the essential pressure-velocity 

coupling without the need for deriving a complex pressure Poisson equation. In 

the present analysis, a partially filled spherical container is assumed to be undergo­

ing a general motion characteristic of that experienced by a spin-stabilized satellite. 

Therefore, a general formulation of the governing equations is essential to efficiently 

describe the liquid motion. Chakravarthy [41] investigated laminar incompressible 

flow motion within liquid filled shells under rotation but without the presence of 

free surfaces. Vaughn, Oberkampf and Wolfe [35] solved the three-dimensional in­

compressible Navier-Stokes equations for a fluid-filled cylindrical canister that was 

both spinning and nutating. The equations were transformed to a noninertial frame 

to easily describe the the flow motion under this spinning and nutating condition. 

Again the container was completely filled with fluid and no free surface was present. 

It was observed from a literature review that liquid sloshing problems have generally 

been restricted to either cylindrical [42] or rectangular [39] geometries. 

Some preliminary work on sloshing in spherical containers was reported by Kassi­

nos and Prusa [38], in which the general motion of the spherical container was ac­

counted for by a complete coordinate transformation using several successive axis 

rotations and a translation. The mathematical formulation of Kassinos and Prusa, 
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which is applicable to sloshing phenomena under a variety of conditions, was adopted 

in this study. However, a completely different numerical approach was used to solve 

the governing equations in the present study. In the approaches used by Kassinos and 

Prusa [38] (a type of fractional step method), the compatibility condition for an in­

compressible fluid was satisfied indirectly by solving a Poisson equation derived from 

the continuity and momentum equations to obtain the pressure. The algebraic form 

of the governing equations was then solved by a Gauss-Seidel method in a segregated 

manner, i.e., one equation solved for each variable. 

Since the long-term goal of the research project of which present study is a 

part is to numerically simulate the interaction between the liquid sloshing motion of 

the container and the satellite structure, several important features of the present 

formulation were designed to handle the future interaction. Due to the elasticity of 

the structure to which the container is attached, the motion of the container will 

be affected by the structure deformation, and likewise, the structure will be affected 

by the liquid sloshing motion within the container. In order to simulate the liquid 

motion aboard a satellite, it is not realistic to simply simulate the liquid motion alone 

using a prescribed motion of the container. The simulation should be accomplished 

by considering the interaction between the motion of the liquid and the dynamics of 

the structure itself (determined from a numerical solution of the equations governing 

the dynamics of the structure) at each time step. The motion of the container 

cannot be precisely determined in advance in this interaction procedure. The current 

formulation was designed in such a way that it is ready to accept the instantaneous 

container position, angular velocity, and acceleration as input to construct the related 

quantities in the code. Based on this information, the present CFD code will compute 
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the flow solution, including the new position of the free surface, and pass the location 

of the center of gravity of the fluid and the container, and the resulting sloshing force 

and moment at the current time back to the structural code. The interaction will 

continue indefinitely or until a final steady state solution is reached. To date such 

an interaction has not been simulated, although the current formulation has been 

designed in accordance with this future goal. 

With the adoption of the artificial compressibility method for solving the three-

dimensional incompressible equations, the numerical solution algorithm for both the 

two and three-dimensional equations is identical except that the coupled two and 

three-dimensional SIP solvers are slightly diflerent in form. The SIP method will 

be briefly described in the following section and further details will be provided in 

Chapter 4 and Appendix F. 

1.1.3 Methods for solving the algebraic equations 

Methods for solving the algebraic system of equations arising from differencing 

of partial differential equations usually fall into two main strategies [7]: one is the 

direct solution method and the other is the iterative solution method. In general, 

a direct solution method involves a form of Gaussian elimination and requires an 

amount of storage (especieJly for the three-dimensional algebraic system of equations 

occurring in the present study) which is beyond the memory capacity of most current 

computers. On the other hand, since the Navier-Stokes equations are a set of highly 

coupled nonlinear equations, even when a direct solution method is used, some type 

of "iterative" procedure may be needed to remove (or at least minimize) the errors 

due to the linearization procedure. For these reasons, the direct solution method 



www.manaraa.com

13 

was not used to solve the matrix system in this study; instead, an iterative solution 

method was adopted. 

Several different iterative methods are currently being used in CFD applications 

[7]. A point Gauss Seidel method is the simplest iterative method. It is extremely 

easy to program but converges relatively slowly, and for some difficult problems the 

scheme may diverge readily due to a very low degree of solution coupling. A varia­

tion of the point Gauss Seidel method is called the successive over-relaxation (SOR) 

method. In this method an over-relaxation parameter is introduced to accelerate 

the convergence rate. The above two methods are considered as "explicit" iterative 

schemes since the unknowns at the neighboring points are treated explicitly. Another 

type of iterative method is known as a semi-implicit iterative (or block iterative) pro­

cedure. The most widely used methods belonging to this category are SOR by lines 

(SLOR) and the alternating direction implicit (ADI) method. The reason they are 

called "semi-implicit" is that in multi-dimensional problems, these methods treat the 

unknowns implicitly only in one direction at a time and lag the unknowns in the 

other direction(s) to the right hand side (RHS) of the matrix system of equations. 

These methods usually lead to a tri diagonal matrix system for a scalar equation or 

a block tri diagonal matrix for vector equations. They are presently very popular 

because less computer memory is required to store the coefficient matrix and efficient 

tridiagonal matrix solvers are readily available (see [7]). In multi-dimensional flow 

problems, the lagging of the unknowns to the RHS can sometimes result in very slow 

convergence or even solution divergence for some difficult problems. In spite of the 

above problems, the semi-implicit iterative methods are still widely used in the CFD 

community due to their relative simplicity and modest memory requirement. 
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Another type of iterative method is known as the strongly implicit method [43]. 

It has a faster convergence rate than the methods mentioned previously such as SOR, 

SLOR and ADI. One version of the strongly implicit method which is beginning to 

gain favor for solving fluid flow problems is the strongly implicit procedure (SIP) 

proposed by Stone [29]. It is called "strongly implicit" because the method treats 

all unknowns in a 2-D plane for two-dimensional problems and a 3-D cube for three-

dimensional problems in a strongly implicit manner. No unknowns at the neighboring 

points are lagged to the RHS of the matrix system. Due to this strongly implicit 

treatment for the governing equations, the coupling between the unknowns at each 

grid point is greatly enhanced. 

For two-dimensional flows, Schneider and Zedan [30] proposed a modified strongly 

implicit procedure (MSIP) which extended Stone's 5-point SIP formula to a 9-point 

formula. They showed that MSIP was better than SIP in that it was less parameter 

dependent, less sensitive to the grid aspect ratio, and exhibited a faster convergence 

rate. The MSIP scheme reduces to Stone's 5-point SIP if the coefiicients at the four 

corner points of the difference molecule are set to zero. Zedan and Schneider [44] also 

extended Stone's 5-point formula to a vector (or coupled) equation. This extension is 

very straightforward. For three-dimensional equations, Weinstein, Stone and Kwan 

[45] derived a 7-point SIP formula for both scalar and coupled equations. Zedan and 

Schneider [46], following the same MSIP idea for two-dimensional equations again, 

extended the 7-point formula to a 19-point formula for a scalar three-dimensional 

equation. 

Despite the fact that Stone's SIP method was flrst introduced about two decades 

ago, it has only recently been widely used in the CFD community, mainly because 
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it requires somewhat more computer memory than other iterative schemes and this 

additional memory has only become readily available in recent years. Several applica­

tions using the SIP method to solve fluid flow problems can also be found in Walters, 

Dwoyer and Hassan [47], Reddy and Rubin [48] and Khosla and Rubin [49] and Ra-

makrishnan and Rubin [50]. In the present study, the 9 point MSIP method and the 

7-point SIP method will be used to solve, respectively, the coupled two-dimensional 

compressible Navier-Stokes equations and the coupled three-dimensional incompress­

ible Navier-Stokes equations. 

1.2 Scope of the Present Study 

It has been the goal of the present research to develop a numerical algorithm 

to efficiently compute two and three-dimensional unsteady viscous flows. Special 

effort was devoted to implementing the present numerical procedure in a manner to 

permit the calculation of compressible flows at all speeds, i.e., over a wide range of 

Mach numbers, and to predicting three-dimensional incompressible liquid sloshing 

flows. A unified approach to solve both the two-dimensional compressible equations 

and the three-dimensional incompressible equations was achieved by choosing the 

primitive variables, (ti, v, p, T) for two-dimensional compressible flows and (u, v, 

w, p) for three-dimensional incompressible flows, as the dependent variables in the 

governing equations and solving the resulting algebraic system of equations by a 

coupled strongly implicit procedure. One of the main goals of the present research 

was to see if the use of pressure as a dependent variable would permit the computation 

of low Mach number nearly incompressible flows with the compressible formulation of 

the governing equations while still providing a shock capturing capability for shock-
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embedded flows. 

The CSIP method has not been widely used for coupled Navier-Stokes calcula­

tions. The test of the performance of this method for a wide variety of flow problems, 

including an unsteady two-dimensional vortex shedding flow over a circular cylinder 

and several truly unsteady three-dimensional liquid sloshing flows under complicated 

boundary conditions, was another objective of this research. Also by using the CSIP 

method instead of more traditional line solvers, it was hoped to enhance the robust­

ness of the solution procedure although more computer storage would be required 

with this method. 

Free surface motion has long been a topic of interest for theoretical, experimental 

and numerical fluid analysts. To accurately predict this type of complex flow numer­

ically was also one of the main goals in this study. Considerable effort was devoted 

to adapting the present algorithm to deal with this formidable problem. Several test 

cases for both compressible and incompressible flows have been solved in this study. 

They include: 

1. Two-dimensional compressible flows 

(a) Developing flow in a channel inlet 

(b) Driven cavity 

(c) Steady flow over a circular cylinder 

(d) Unsteady vortex shedding flow over a circular cylinder 

(e) Supersonic shock-boundary layer interaction 

2. Three-dimensional incompressible flows 
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(a) Steady and unsteady driven cavity flow 

(b) Liquid flows with free surfaces 

i. Initially capped axisymmetric spin-up with glycerin 

ii. Initially capped axisymmetric spin-up with kerosene 

iii. Gradual axisymmetric spin-up with glycerin 

iv. Impulsive axisymmetric spin-up with glycerin 

v. Initially capped asymmetric spin-up with glycerin (two cases) 

All of these cases not only provide a means to evaluate the present numerical 

algorithm, but also provide a challenging opportunity for the present code to handle 

complicated three-dimensional liquid flow problems. 

1.3 Outline of the Thesis 

The motivation and objectives of the present research and some pertinent liter­

ature have been reviewed in this chapter. In the next several chapters, the computa­

tion methodology for solving fluid flows with the present solution procedure will be 

described. Chapter 2 details the mathematical formulation of the governing equa­

tions in generalized nonorthogonal coordinates for both two-dimensional compressible 

and three-dimensional incompressible flows. Several successive coordinate rotations 

for the three-dimensional incompressible equations are required to obtain equations 

suitable to describe the fluid motion under a complicated rotation and nutation. 

Boundary conditions for various types of flow problems encountered in this study are 

derived for two and three-dimensional geometries in Chapter 3. Chapter 4 deals with 
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details of the present numerical algorithm and includes discussion of the discretiza­

tion method, the linearization method, the artificial compressibility method, and the 

coupled strongly implicit procedure. Results for steady and unsteady compressible 

flows and unsteady liquid sloshing flows are presented in Chapter 5. Discussion of 

these results is also contained in Chapter 5. Concluding remarks and recommenda­

tions about the present research are given in Chapter 6. Chapters 8 to 13 are the 

appendix sections which provide some detailed derivations to supplement the main 

body of the present thesis. 
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2. MATHEMATICAL FORMULATION OF THE GOVERNING 

EQUATIONS 

In this chapter the mathematical equations which model fluid flow are presented. 

These equations are the Navier Stokes equations. They state the conservation of 

mass, momentum and energy. The usual form of these equations for a Newtonian 

fluid with the Stokes hypothesis [7] can be expressed as follows: 

^ + / > V - V  =  0  ( 2 . 1 )  

/ . ^ + p V V  =  ̂ - V f + i  ( 2 . 3 )  

where p is the density, V is the velocity vector, p is the hydrostatic pressure, e is the 

internal energy per unit mass, g is the body force, S^j is the Kronecker delta function: 

Sij  = 
1 if i = j  

0  i f i ^ i  

^ represents heat energy production by external agencies, q is the heat conduction 

and $ is dissipation. Fourier's law of heat conduction will be assumed to apply so 

g= -kVT 
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The dissipation function for a Newtonian fluid in a Cartesian coordinate system 

becomes 

$ = /4[2(M®+t;y-fW2)+(v®+tty)^+(îf2/+t;3r)^-f-(tta:-J-it;a5)^—-(uaj+uy+Wz)^] (2.4) 

The ideal gas equation of state and a viscosity law are used to close the system for 

laminar flow. Equations (2.1)-(2.3) are the general form of the governing equations 

written in Cartesian coordinates. 

In the sections that follow, the appropriate form of the g;overning equations 

for two-dimensional compressible and three-dimensional incompressible flows will be 

derived. 

2.1 Governing Equations For Two-Dimensional Compressible Flows 

2.1.1 Physical coordinates 

The two-dimensional Navier-Stokes equations are obtained from Eqs. (2.1)-(2.3) 

by dropping terms in the third dimension. They are recast in a strong conservation-

law form as follows: 

where 

Q = 

( \ 
P 

pu 

pv 

Et 
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E = 

pu 
O 

pu" + p - Txx 

puv — Txy 

^ ElU + pu — UTxx — VTxy + <lx 

F = 

pv 

pvu + p- Txy 

pv^ -  Tyy 

E^V + pv — UTxy — VTyy + qy ^ 

where qx <uid qy are the x and y components of the heat conduction vector q respec­

tively, Ef is the total energy per unit volume which is defined as: 

Et = pe+ ^piu^ + v^) 

and the r^x, Tyy and Txy are the shear stresses which are defined as follows: 

2 du dv 
Txx = (2gJ -

2 dv du 
'ra = 3''^% -

.du dv.  

where p, for air is determined by the Sutherland formula [7] as follows: 

f i  — (2.6) 
iT + C2) 

The Sutherland constants Ci and C2 are: 

Cj = 1.458 X 10"® Kg/{m s vT), Cg = 110.4 K 

The body force term g has been neglected in Eq. (2.5) since body forces were 

not considered in the two-dimensional applications in this study. The dependent 
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variables in £q. (2.5), /o, /ou, f>v and are the so-called conserved variables. Tra­

ditionally, the conserved variables have been used as the dependent variables in the 

compressible flow calculations [9]. However, as mentioned in the previous chapter, 

using density as a primary variable contributes to convergence problems in low Mach 

number flow calculations. To circumvent this problem, pressure is chosen as a pri­

mary variable instead of density in this study, because the variation of pressure is 

generally significant for all flow regimes. In this study, the ideal gas law is used to 

relate the density, pressure and temperature as follows: 

P 
P- RT 

(2.7) 

where R is the gas constant. For air, R is equal to 287 K) 

After replacing the density by pressure and temperature in Eq. (2.5) using Eq. 

(2.7), the governing equations become 

dQiq) ,  dE{q) .  dFiq) „ 
dt dx 

+ 
dy 

where 
I  \  u 

<1 = 
V 

Q = 
p f , _ 

J] ^ CV - , 

(2.8) 

E = 

l^uu + Rp — Rtxx 

]^uv — RTxy 

l^u 
2 2 

^ (C^pP + 4- ^^)m — RUTXX — RvTxy — RkTx 
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J^uv — Rvxy 

]^vv + Rp — R'^yy 

 ̂ {Cpp + 4" — RuTxy — RvTyy — RkTy ^ 

In Eq. (2.8) the Q, E and F vectors are functions of the primitive variable vector q. 

The choice of pressure as a primary dependent variable in the governing equations 

results in a Eq. (2.8) being somewhat more complicated in form than Eq. (2.5). 

However, it should be noted that the viscous terms in the momentum equations and 

the viscous dissipation and conduction terms in the energy equation are expressed in 

terms of the primitive variables and become more straightforward to deal with in the 

linearization process. This will be discussed again in Chapter 4. 

2.1.2 Nondimensional form 

It is a common practice to use nondimensionalized equations as the basis for 

numerical approximations. The advantage to this strategy is that it eliminates the 

need for many dimensional conversion factors within the program, and if the proper 

reference values are prescribed, it ensures that all variables have numerical values 

within a specific range (i.e., 0.0-1.0). 

For convenience, the following nondimensional variables are defined (nondimen-
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sional quantities are indicated by a asterisk): 

r = - \= = u* = — t;*= " 
^refl^vef  ^ref  ^ref  ^ref  ^ref  

* P * P m* ^ p' = :—^ r' = — M = 
^re/ ^Pref\ef^ *'®/ ^re/ 

* ^ 1 r»* - 1 

The nondimensional parameters Re, Moo and Pr represent Reynolds number, Mach 

number and Prandtl number, respectively, and are defined as follows: 

Be V, Mco= , fr = % 
f^ref  yfy^^ref  

The new nondimensional Sutherland constants and are defined as follows: 

n 

and the nondimensional Sutherland formula for air becomes 

^*21*3/2 

^ " (T* + CJ) 

The local thermal conductivity A; can be determined from the Prandtl number which 

is assumed to be constant in the present study: 

The definition of each of these variables can be found in the Nomenclature. 
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For all the compressible flow cases examined in this study, the working fluid was 

considered to be air, and unless otherwise noted, the following constant values of 

fluid properties were used: 

Cp = 1006 m2/(j2 k) 7 = 1.4 

/fygy = 1.6 X 10~® kg/(m s) Pp = 0.7 

The above nondimensional quantities are substituted into Eq. (2.8) and the resulting 

equation in nondimensional form is: 

dQiq) .  dE{q) .  dF(q) 

where 

dt dx dy 
= 0 (2.10) 

/ > 
u ' Ç 

V 
Q = 

p 

1, (Cp - ! 

E = 

l^UU + Rp — Txx 

l^uv — Txy 

^ (CpP + + ^%-)w - ̂ Txx -  VTxy -
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F = 

l^uv — Txy 

l^VV Rp- Tyy 

h 

{Cpp + f V + ~ ~ ^"^yy ~ 7^?^ 

2jR/t.„ôtt dxK 
= 3«;(% - %) 

2R^t.  dv du.  
=  3 % %  -  â î '  

Ru ,du dv.  
+ %) 

In Eq. (2.10), the superscript *'8 for all nondimensional variables have been dropped 

for convenience. 

2.1.3 Transformed coordinates 

In order to solve Eq. (2.10) numerically it is generally necessary to use a variably 

spaced numerical grid. The equations can be differenced in their present form for 

variable grid spacing, but the resulting system is complicated and difficult to program. 

Instead, a coordinate transformation is applied to the governing equations, and the 

equations can be solved in a uniformly-spaced computational plane while taking 

advantage of variable spacing in the physical domain. 

When the grid was stationary in the physical domain, the following generalized 

coordinate transformation was used: 

T =  t  i  =  ( { x j y )  Tf =  ii{ x , y )  
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The metrics of the transformation are: 

ix = Jyi) = vx =—Jy^ (2.11) 

and the Jacobian is given by 

Applying the above coordinate transformation to Eq. (2.10) through the application 

of the chain rule: 
d ,  d ^  d 

the governing equation becomes 

The application of the coordinate transformation described above has resulted 

in a loss of the desired strong conservation law form of the equations. The strong 

conservation law form of the equations is essential for proper shock-capturing in the 

numerical solution [11]. Fortunately, it is possible to recombine the transformed 

equations to recover the strong conservation law property. Following the procedure 

outlined by Vinokur [51], the strong conservation law form may be recovered by first 

dividing the equations by the Jacobian, J, and adding and subtracting like terms 

which may later be combined to form the conservative derivative terms. Finally the 

resulting equation becomes: 
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where 

9 = 

/ \ ' 

u 

V 
« = 7 « = 7 

p 

T 
\ / \ 

f 

(Cp - + 2^ y 

^ = 7 

]^uU + Rp^x — ((xTxx + iyfxy) 

^vU + Rp^y -  i^xTxy + îy' f 'yy) 

§,U 

(Cpp + 4-

—^xMTaj® — ((z% + -  iyv'yy 

< ~ [((r + + ((z%z + ^yny)Tri] 

^ = 7 

^ ^«V 4- fijw/x — (î^œTx® + t \yfxy) 

Jj^vV + iZp7j/ - iVxTxy + ̂ y'Tyy) 

§,v 

{Cpp + 4- §'\)V 

—rjxUTxx — ivxv 4- Vy'^)'^xy ~ 

-•p^^[(^a!»/x + iyVy)'^^ + (^® + lyWrjl ; 

and 

2 jRu 
Tzz = 4- rixU'q) - ((yVf 4- »?yv?;)] 
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2 Ru 
+ qy%q) - (^x«^ + 

fry = ^[((y"( + %y%%) - ((%*( + Vxvtj)]  

U = + ̂ yv V = J/®tt  + i}yv 

Equation (2.14) is the final form of the governing equations which was used in 

this study to solve both steady and unsteady two-dimensional flows with different 

geometries. Boundary conditions are needed to close the system of equations and 

will be discussed in Chapter 3. 

In the next section, the three-dimensional Navier-Stokes equations for incom­

pressible flows in a primitive form will be derived. 

2.2 Governing Equations For Three-Dimensional Incompressible Flows 

For a truly incompressible fluid, the density in Eqs. (2.1)-(2.3) is constant. If 

flow properties, ft and k, remain constant, Eqs. (2.1)-(2.3) can be reduced to: 

gi . .  11.10 

Equation (2.15) is the continuity equation and Eq. (2.16) is the momentum equation. 

Following the convention of index notation, a single (unrepeated) index is a free index 

and its value ranges from 1 to 3. When a repeated index appears in the same term, 

it represents a summation over three terms with the index ranging from 1 to 3. For 

incompressible flows, the energy equation is usually decoupled from the continuity 

and momentum equations except for flows with high temperature gradients. Since 
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®03 

®23 

®22 

«21 liquid 

«02 

«01 

Figure 2.1: Schematic of a partially filled rotating-nutating container moving rela­
tive to an inertial frame 

heat transfer is not of major interest for the incompressible flow calculations in this 

study, the energy equation was not solved in the three-dimensional cases. However, 

it can be added to the above equations if the temperature distribution is needed. 

Both equations are written in index notation. The choice of the index notation 

for the three-dimensional incompressible equations is based on the fact that for the 

three-dimensional liquid sloshing motion inside a spherical container considered in 

this study, use of this notation facilitates the derivation of new equations accounting 

for the general rotating-nutating motion of the container. A schematic diagram of 
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the partially filled rotating-nutating container is shown in Fig. 2.1. 

Since this problem involves a general rotating-nutating motion of the container, 

there are at least two different approaches to solving this problem. First, the above 

equations could be solved in the form indicated above together with the proper treat­

ment of the boundary conditions in accordance with the rotating-nutating motion of 

the container at any instant of time. Ideally, this treatment is workable for a sim­

ple motion of the container, but will become impractical and difficult for describing 

the motion and interpreting the results if a general rotating-nutating motion is en­

countered. Actually, such a general motion can arise in the interaction between a 

satellite structure and the liquid sloshing in a partially filled container. Therefore it 

is more appropriate to handle the general motion of the container with terms within 

the equations themselves. That is, the motion of the container relative to an inertial 

frame can be implicitly accounted for by proper coordinate transformations. This is 

the second approach and the one that will be adopted in this study. 

Following the approach outlined in [38], several steps are needed to transform the 

governing equations from an inertial frame to a noninertial frame. They are described 

in the following several sections. In addition to those transformations, a generalized 

nonorthogonal coordinate transformation was applied to the resulting equations to 

handle the irregular geometry of the boundaries. The transformations needed are 

summarized as follows and will be discussed one by one. 

1. inertial frame —> ZQ coordinate 

2. V*!» i>2 V'S rotation —> coordinate 

3. translation h{ —> «2 coordinate 
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4. free surface tracking transformation, tj>r rotation -* 23 coordinate 

5. generalized nonorthogonal coordinate transformation -* z  coordinate 

2.2.1 The rotating-nutating coordinates: xi coordinate system 

The original three-dimensional incompressible equations will be labeled with a 

subscript 0 to indicate that they are in xq inertial frame and rewritten as 

The container may undergo a motion with nonzero angular velocities or accel­

erations with respect to each axis at any instant of time. If a coordinate frame, 

is attached to the spacecraft undergoing this general motion, then three successive 

coordinate rotations will reflect this motion. The three coordinate rotations are per­

formed in the following order (see Fig. 2.2). First, the sq coordinate rotates an angle 

^*3 counterclockwise about the «03 axis. This leads to an intermediate coordinate 

called #1. Second, the xi coordinate rotates an angle ^>2 counterclockwise about the 

xi2 axis. This leads to another intermediate coordinate called Finally, the 

frame makes another counterclockwise rotation of an angle about the axis. 

This last rotation gives the desired coordinate 

The relationship between the ZQ and Z^ coordinates can be expressed as: 

®0t = (2-19) 

where a^j represents the elements of a 3x3 transformation matrix resulting from the 
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above successive rotations. The elements of this transformation matrix are shown in 

Appendix A. 

2.2.2 The elastic arm coordinates: zg coordinate system 

Since the container is attached to a spacecraft by an elastic bar, another trans­

lation is required to move the origin of the xj coordinate to the location of the 

container by the length of the elastic bar h^. This translation leads to a coordinate 

frame designated as zg. The relationship between and zg 

®2t = ®li - K (2.20) 

Eqs. (2.19) and (2.20) can be combined into a single equation relating the zg and zg 

frames. The relationship between XQ and ZG is 

®2ï = «jî®Oj - (2.21) 

or 

®0t = <*tj(®2j + ^j) (2.22) 

Applying the chain rule to the derivative terms in Eqs. (2.17) and (2.18), the following 

relationships between ZQ and ZG frames were obtained: 

d d 

dxQi  ^^^dx2 j  

a2 _ g2 ^ g2 ^ g2 

^®0t ^®2j^®2A; ^''dx2jdx2k ~ dx2jdx2j 

à  # .. , u \ u  1 ^ + H) -
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The governing equations in the zg frame, i.e., Eqs. (2.17) and (2.18), can be written 

in terms of the new X2 coordinates and new velocity components in the X2 frame 

by using the above chain rule relationships. The new governing equations in the X2 

frame are: 

^ = 0 (2.23) 
ox2i 

^ + l«jz«iib(®2ib + h) - K+«2*)^ 

where 

«2» = 

921 = 

\ ^ 

^ 
2.2.2.1 A new relative velocity in the X2 frame A new relative veloc­

ity is defined as follows to permit a more convenient application of the boundary 

conditions and to facilitate interpretation of the solutions: 

«2// = «2/ + + h) - À* 

This new relative velocity is always zero at the wall of the container no matter what 

kind of motion the container may undergo. The introduction of this new relative 

velocity can greatly simplify the treatment of the boundary conditions. Substituting 
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the above definition of the relative velocity into Eqs. (2.23) and (2.24) and neglecting 

the we have the following equations written in terms of relative velocity components: 

^ ~ + *») - &,,!:(% + *i) 

(2.26) 

where 

/^cr,li = 

A,f: = 

f^cp,li = ̂ kl^ki - ̂kl^nj°'kj°'ni 

El = 2âiiaijhj - hi 

2.2.3 EVee surface tracking coordinates: zg coordinate system 

When the container undergoes a rotating-nutating motion, the free surface shape 

will change continuously with time. Equations (2.25) and (2.26) can be used to model 

this motion; however, a third coordinate rotation is preferred in this study for the 

following two reasons. First, the kinematic equation which is used in this study to 

update the free surface at each time step requires that the free surface height be 

a single valued function of the other two coordinates. Therefore it is important to 
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'i-W', 

Figure 2.3: Notation for the S transformation 

keep this free surface a single-valued function by rotating the coordinates as required 

at each computational time step. Second, rotating the coordinates in response to 

changes in the orientation of the free surface facilitates the establishment of the 

computational grid by the present algebraic grid generation scheme. 

At any instant of time, the free surface may move to a new position with respect 

to the X2 coordinates as shown in Fig. 2.3. It is desirable to have the X23 axis remain 

normal to the free surface in an average sense. One way to accomplish this is to let 

the X2 coordinates rotate an angle ^ counterclockwise about the X22 axis as shown 

in Fig. 2.3. A transformation matrix, 5, is required to transform from the zg to 

the 23 coordinates. The expression for this transformation matrix is also listed in 
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Appendix A. The relationship between the zg zg coordinates is: 

®2i ~ Hj^Zj (2.27) 

where s^j is an element of S. 

The chain rule is then applied to Eqs. (2.25) and (2.26) using Eq. (2.27) and the 

resulting governing equations in the zg coordinates are: 

du 

dx^i 
= 0 (2.28) 

+ (*3t + - (Alt + 2A„i)tt3^ -

where 

"Sj = 

9Zn -  ̂ lnS2l 

fij = hi^kj 

^ni ~ ^cr,lj'ji'ln 

n,ni = Pep, 

^2,ni = il^t,li+f^cp,li)*ln 

En = si^Ei 

It should be noted that the application of this transformation introduces additional 

terms into the original governing equations. Careful attention must be paid to the 

evaluation of the elements of transformation matrix, s^j, and its time rate, to 

avoid numerical instability. The treatment of these terms is described in the last test 

case regarding to the liquid sloshing results in Chapter 5. 
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2.2.4 Nondimensional form of the governing equations in the zg coordi­

nate system 

Equations (2.28) and (2.29) aie dimensional equations. They can be nondimen-

sionalized by properly choosing the characteristic quantities. Let the nondimensional 

quantities be defined as: 

PQ = atmospheric pressure or saturated vapor pressure above the free 

surface 

After replacing the dimensional quantities in Eqs. (2.28) and (2.29) by the nondi­

mensional quantities in Eq. (2.30), the following nondimensional form of the governing 

equations in zg coordinates (the superscript * has been dropped) is obtained: 

where 

^ref ~ reference length = radius of the sphere 

= reference velocity (will be defined later) 

Ppgy = reference pressure = y 

(pgy = reference time = y-^ 
re f  

(2.31) 

Otl 
dx^Ti Redxi^jdxi^j 
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where Re is the Reynolds number and is defined as: 

fle = WW 
V 

2.2.5 Generalized nonorthogonal coordinates: z coordinate system 

Equations (2.31) and (2.32) are written in the noninertial Cartesian zg coordi­

nates. However, it is very difficult to handle irregular boundaries such as the free 

surface and the spherical container wall in this coordinate system. It is desirable to 

establish a new coordinate system having the property that the coordinate lines fit 

the boundaries of the problem domain of interest, i.e., the liquid itself enclosed by 

the container wall and the free surface. 

Let this new coordinate system be designated by (r, 2%). The relationship be­

tween the ((3, «3,) and (T, Z{) coordinate systems can be expressed as: 

T = ig (2.33) 

H = » *32, ®33 » '3) (2.34) 

By applying the chain rule to the time and spatial derivative terms, we have: 

d d 
d^i = 

d 

dr "^dzj 

where 
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dz j  

d^Z{ ^ ^ 
liM = 9XI J»X3J 

and 

dz -
ij = is the grid speed term. 

Note that the definition of ij has been changed in these three-dimensional equations. 

The final governing equations in generalized nonorthogonal coordinates are: 

= 0 (2-35) 

^ + nj,iU3i + Vj,ifik'^3k)^ - Uni + 2A„,)U3,-

= -n,m®3i - '^2,nih " 9Zn + ^n, (2.36) 

The definitions of the metric terms and the grid speed terms are as follows: 

VI,1 = 4(2,2(3,3 - (2,3(3,2) 

^1,2 = -4(1,2(3,3 - (1,3(3,2) 

*71,3 = 4(1,2(2,3-(1,3(2,2) 

V2,l = -4(2,1(3,3 -(2,3(3,1) 

92,2 = 4(1,1(3,3 - (1,3(3,1) 

%,3 = -4(1,1(2,3 - (1,3(2,1) 

'73,1 = 4(2,1(3,2 - (2,2(3,1) 
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V3,2 = -4(1,1(3,2 - (1,2(3,1) 

%,3 = 4(1,1(2,2-(1,2(2,1) 

dx^ j  ^ ^3  dz f j  

H = -hjm,] 

J = 7  
(1,1 ((2,2(3,3 - (2,3(3,2) - (l,2((2,l(3,3 - (2,3(3,1) + (l,3((2,l(3,2 - (2,2(3,1) 

dz%i , . dx'. 
where Cj j and 
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3. BOUNDARY CONDITIONS 

The role of the boundary conditions in the numerical solution procedure is ex­

tremely important. The boundary conditions clearly define the domain of interest 

and reflect the nature of the flow under consideration. It is those special conditions 

(equations) at the computational boundaries that guide the code to the desired so­

lutions. Although the word "boundary conditions" is generally used in the literature 

as in this chapter title, it is believed that the designation "boundary equations" is re­

ally more descriptive than "boundary conditions" for the boundaries of a complicated 

problem like the present three-dimensional liquid sloshing configuration. It is those 

special "boundary equations" that govern the motion of the fluid particles at the 

boundaries. In general, they are not simple equations. It is known that solving the 

full unsteady Navier-Stokes equations is an initial and boundary value problem. Both 

initial and boundary conditions need to be specified. For a well-defined problem, the 

initial conditions usually can be easily specified. Starting from this initial condition, 

the flow afterward will be completely controlled by the Navier-Stokes equations and 

those special equations at the boundaries. 

All boundary conditions are treated implicitly. In general, except for noslip 

boundaries, the governing equations are written at boundary points. This proce­

dure usually requires field variables at the points outside the domain. The way the 
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unknowns at these extra points are determined varies with the boundary and flow 

types. The boundary conditions for the two-dimensional compressible and three-

dimensional incompressible flows considered in this study were somewhat different. 

For the two-dimensional compressible flow results presented in this study, several 

different types of boundaries were involved. They include inflow, outflow, farfleld, 

symmetry, periodic and wall boundaries. The treatment of the boundary condition 

for the two-dimensional compressible flow calculations will be discussed first in the 

following section. For the three-dimensional incompressible liquid sloshing calcula­

tion inside a partially filled spherical container considered in this study, there are 

only two types of boundaries, i.e., wall and free surface boundaries. Since the treat­

ment of these boundaries is quite different from their two-dimensional compressible 

counterparts, it will be addressed in a separate section. It should be noted that only 

the concepts used in obtaining the boundary conditions (or equations) is discussed 

in this chapter. The detailed boundary condition implementation in the numerical 

procedure is described in Chapter 4. 

3.1 Two-Dimensional Compressible Flows 

For various two-dimensional compressible flow calculations considered in this 

study, the boundary conditions were specified as follows: 

1. Inflow boundary 

For subsonic fiows, u, v and T were specified at this boundary. However pressure 

was extrapolated from interior points due to the elliptic nature of the pressure 

signal propagation in the subsonic regime. For supersonic flows, all variables 
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lubioiiic! tt, p, T ipecified, v extiapolateiT 

Inlet ^ lupewonic; u. v, p, T specified / htRtld 

j = imax + 1 
i = 

ivbivniç 
11, V, T specified 
p extrapolated 
supersonic; • 

u, V, p, T specified ' 

» = itnax + 1 
• = 'max 

lubionic! 
p ipecified 
u, v, T extrnpolated 
«uperionic; 
u, V, p, T extrapolnted 

wall u = V = 0, 7ti;=const. 
noiinid momentum equation (or dp/dn = 0) 

Figure 3.1: Boundary condition treatment for inflow, outflow, wall and farfield 
boundaries 
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must be specified (see Fig. 3.1). 

2. Outflow boundary 

For subsonic flows, the full Navier-Stokes equations were still written at the 

outflow boundary. The real boundary conditions were then technically specified 

at the points outside the computational domain (see Fig. 3.1). The freestream 

or atmospheric pressure was specified at this extra point and extrapolation was 

used to obtain values for other variables. For supersonic flows, all quantities 

were extrapolated from interior points. 

3. Farfield boundary 

The farfield boundary was chosen far enough from the object considered so that 

the influence of the location of this artificial boundary on the solutions was 

small. For subsonic flows, the full Navier-Stokes equations were still written at 

this boundary. Freestream velocity, pressure and temperature were specified at 

the point outside the computational domain (see Fig. 3.1) and the v component 

of velocity was obtained at this extra point from the continuity equation. For 

supersonic flows reported in this study, all variables were specified. 

4. Symmetry boundary 

If a line of symmetry exists in a flow, it is common practice to solve the problem 

for only one half of the domain using a symmetry boundary condition. The 

governing equations were written on the line of symmetry. All variables at the 

points outside the domain were obtained by the symmetry condition for u, p 

and T and the antisymmetry condition for v (see Fig. 3.2). 
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. J' = 2 - - - -

«1,0 = «1,2' ^1,0 = -n,2 

line of symmetry 

Figure 3.2: Boundary condition treatment for a symmetry boundary 

5. Periodic boundary 

In one of the two-dimensional compressible flow calculations, i.e., vortex shed­

ding over a circular cylinder, and the three-dimensional incompressible liquid 

sloshing calculation, the condition of circumferential periodicity existed in the 

flow. The periodic condition was assured by overlapping the solutions for three 

constant 9 lines (or planes in 3-D; see Fig. 3.3). The governing equations were 

still written at this boundary (t = 1 and i = imax)-

6. Wall boundary 

Instead of writing the governing equations at this boundary, noslip conditions 

were used for velocity components (see Fig. 3.1). Either fixed temperature or 

a specified heat flux condition was used for the boundary condition for T. For 

pressure, instead of specifying a zero pressure gradient condition, the favored 

treatment was to write the normal momentum equation at this boundary and 

apply the noslip conditions to simplify it. The resulting equation related the 
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outer boundary (j = jmax) 

I — 2{imax + 1) 

i = l(»max) 

i — 0(iTnax — 1) 

line (or plane) of periodic boundary 

I 
circular cylinder 

Figure 3.3: Boundary condition treatment for a periodic boundary 
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normal derivative of pressure to velocity derivative terms. The detailed im­

plementation of this type of boundary condition will be presented in Chapter 

4. This treatment will become more complicated for irregular or curvilinear 

boundaries but it may enhance the coupling between the pressure and velocity 

fields and eliminate spurious pressure solutions. This idea will be discussed 

further in the results section. 

For internal steady flow calculations, the treatment of the pressure boundary 

condition at inflow and outflow deserves special attention. The pressure level cal­

culated at the inflow boundary must be adjusted as the calculation proceeds if the 

specified inflow Reynolds number is to be maintained. The same adjustment must 

be applied to the pressure everywhere, including the outflow pressure. This pres­

sure adjustment procedure maintains a constant and predetermined mass flow rate. 

Without this adjustment, the Reynolds number of the final converged solution may 

drift from the desired value. This drift was found to be more severe for low Reynolds 

number flows. 

3.2 Three-Dimensional Incompressible Liquid Sloshing Flows 

There are only two types of boundaries for this three-dimensional configuration. 

They are the solid wall of the container and the free surface. Four boundary equations 

are required at each boundary to close the system of equations since the Navier-Stokes 

equations consist of four equations for four unknowns. In the following sections the 

boundary equations for the two types of boundaries (solid wall and free surface) will 

be derived. 
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3.2.1 Wall boundary equations 

At the wall of the spherical container, it is easy to specify three equations due to 

the zero relative motion between the fluid particles and the solid wall. These three 

boundary equations are: 

= 0 t = 1,2,3 (3.1) 

The fourth equation is to provide a boundary condition for pressure and comes 

from conservation of momentum in the direction normal to the wall. This normal 

momentum equation is formed by performing the inner product of the local unit 

vector normal to the wall and the three momentum equations such as: 

Mn = n' M 

where Mn represents the normal momentum equation, n is the local unit normal 

vector at the wall and M represents the three momentum equations in a vector form. 

The expression for the local unit normal vector at the wall is listed in Appendix B. 

The resulting normal momentum equation, after simplifying with Eq. (3.1), becomes 

= {n,m®3t + - (^2 + '/2,t/tA!®3ife)^~ 

(3 2) 

It is assumed that the wall of the container coincides with the zg = constant surface 

in Eq. (3.2). As shown in this equation, the pressure boundary equation is not simple 

at all. However, due to the use of the index notation, the derivation of this equation 

is surprisingly straightforward. After differencing, all terms with dependent variables 

that fit into the 7-point molecule were treated implicitly. The numerical treatment 

of this boundary equation for pressure is discussed in more detail in Chapter 4. 
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3.2.2 fVee surface boundary equations 

Strictly speaking, Ave equations are needed at this boundary since one more 

equation is required for an additional unknown, i.e., the free surface position, which 

is part of the solution. This extra equation will be discussed in the following section. 

The so-called dynamic equations will be discussed first. These equations, which will 

be coupled with the Navier-Stokes equations for the interior points, are derived based 

on the following conditions. First, it is assumed that the two tangential shear stresses 

albng the free surface are zero since no external tangential forces are applied to the 

surface. Second, the normal shear stress must be continuous across the free surface 

boundary, and finally, the continuity equation must be satisfied at this boundary. 

For the continuous normal stress condition, a further assumption for air is made that 

only the pressure contribution to the normal stress equation is retained, since the 

viscous stress contribution is small for air compared with similar terms for the liquid. 

These four equations in nondimensional form are: 

1. Continuity equation 

2. Zero tangential shear stress (two equations) 

(3.5) 

(3.4) 

3. Continuous normal shear stress 

(3.6) 
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where 

n denotes distance normal to the free surface (n is the unit normal 

vector) 

rj denotes distance along the 1st tangential direction at the free 

surface (fj is the 1st unit tangential vector) 

f2 denotes distance along the 2nd tangential direction at the free 

surface (fg is the 2nd unit tangential vector) 

Un denotes velocity component along the n direction at the free sur­

face 

C/rj denotes velocity component along the direction at the free 

surface 

Ut2 denotes velocity component along the direction at the free 

surface 

Ki ,  K2  and K  denote local curvature terms 

l^e is the Weber number and is defined as 

where F is the surface tension coefficient. 

The definitions of the above quantities are listed in Appendix C. The numerical 

treatment for this boundary equation is discussed in more detail in Chapter 4. 
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3.2.3 Free surface kinematic equation 

The free surface kinematic equation is derived from the Lagrangian point of view. 

Basically, it represents the fact that fluid particles which lie on the free surface must 

remain on it. Letting F be the free surface height which is a function of time , and 

the zgj and zgg coordinates, the condition that a particle on the free surface must 

remain on the free surface can be written as: 

^^{J''(®31»®32»'3) - *33} = 0 

Using the chain rule to express this in terms of the generalized nonorthogonal coor­

dinates gives the following representation for the free surface kinematic condition: 

^ = {«33 +/3fc®3Jb} 

dF 
-{zi + («31 + + («32 + /2jb®3A!)'^l,2}^ 

dF 
-{h + («31 + hk^Zk)n,\ + («32 + /2ib®3fc)'^2,2}^ (3-7) 

In the above equation, the free surface coincides with the 23 = constant surface. 

So far the governing equations and boundary conditions for two and three-

dimensional flows have been derived. The equations are expressed in terms of the 

so-called '^primitive variables'*. The partial differential equations will be discretized 

and solved by a numerical method. The numerical solution algorithm is described in 

the next chapter. 
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4. NUMERICAL SOLUTION ALGORITHM 

In this chapter, the numerical solution algorithm will be described. The discus­

sion will cover the discretization method, the linearization method, the grid gener­

ation scheme, metric term evaluation, the boundary condition implementation, the 

artificial compressibility method for incompressible equations, the coupled strongly 

implicit procedure, the convergence acceleration technique, the convergence criterion 

and the solution procedure. These topics will be described one by one. 

4.1 Discretization Method 

The governing equations written in a generalized nonorthogonal coordinate sys­

tem for two-dimensional compressible flows, Eq. (2.14), and three-dimensional incom­

pressible flows, Eqs. (2.35) and (2.36), contain five types of terms: time derivative 

terms, first order spatial derivative terms, second order derivative terms, second or­

der cross derivative terms and source terms. The discretization method for each 

type of derivative term is described as follows. It should be noted that the follow­

ing discretization methods, in general, were applied to the interior points only. The 

equations written at the boundary points (boundary equations), were discretized in 

different ways and are described in the the section entitled "the boundary condition 

implementation" in this chapter. 



www.manaraa.com

55 

t. Time terms 

Letting ^ be a general dependent variable, a first-order accurate forward differ­

ence was used such as: 

Note: Unless otherwise noted, no subscript for the dependent variable, means 

that it is evaluated at the center point, i.e., (t, j) for two-dimensional equations 

or {i,j,k) for three-dimensional equations. Furthermore, only those subscripts 

that are incremented from the (t,i,A) level will be shown. For example, ^ 

will be written as 

2. First-order spatial derivative terms 

A second-order central difference formula was used for these terms such as: • 

where, = At] = 1 is assumed. 

3. Second-order spatial derivative terms 

A second-order central difference formula was used for these terms such as: 
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However the following difference method was used for the second-order spatial 

derivative terms appearing in the two-dimensional compressible equations: 

where t 4- 1/2 indicates a location halfway between i and t + 1 and i — 1/2 

denotes a location halfway between i — 1 and t and a represents a combination 

of metric terms and viscosity in the viscous terms in the momentum equations 

and the coefficient to the conduction terms in the energy equation. The values 

of and determined as follows: 

n+l /2  = |(®t + ®t+l) 

*t-l/2 =  ̂ K+«i-l)  

The first-order derivative terms at the half nodal point were evaluated as fol­

lows: 

Similar expressions for the terms in the ij direction were evaluated in the same 

way. 

4- Second-order spatial cross derivative terms 

A second-order central difference formula was used for these terms such as: 

- ̂ F-w+i ^%-i) 
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In this section, only terms with notation used in the two-dimensional equations 

are shown; however similar terms in three-dimensional equations were evaluated 

in the same way and will not be repeated. 

4.2 Linearization Method 

All nonlinear terms were linearized by a Newton method [7]. The representation 

for typical nonlinear terms such as the time term in the continuity equation of the two-

dimensional equations and one of the convective terms in the momentum equation of 

the three-dimensional incompressible equations are illustrated as: 

== + (2)"+! (4.1) 

' ' ' ' (4.2) 

where (p)""*"^, (®3i)""*"^ and are values from the previous 

iteration level of the current time level, % + 1. 

The linearization error can be effectively removed by doing subiterations at each 

time level. It should be noted that an equivalent formulation can be developed using 

conventional Jacobian matrices [7] for the system of equations. This equivalence is 

shown in Appendix D. 

All terms containing the dependent variables were treated implicitly and put on 

the left hand side (LHS) of the equations to form the coefficient matrix except for 

the cross derivative terms in the viscous terms of the momentum equations and the 
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viscous dissipation terms in the energy equation. These terms were lagged to the 

right hand side (RHS) of the equations and were evaluated at the previous iteration 

level of the current time step. For the three-dimensional equations, several source 

terms arising due to the coordinate rotation and gravity were evaluated on the RHS. 

The linearization procedure for each term in the two-dimensional governing equa­

tions is somewhat tedious but straightforward. For the three-dimensional equations, 

only one of the convective terms needs to be linearized. The use of index notation in 

the three-dimensional equations not only simplifies the derivation of the final form 

of the governing equations, but also helps in the development of a compact three-

dimensional code. 

After carrying out the above linearization procedure, the four dependent vari­

ables at the current time level, n + 1, appear in each of the four equations. At each 

nodal point there are four coupled equations which can be used to solve for the four 

dependent variables simultaneously. Also, the coupling of the unknowns in the entire 

2-D or 3-D computational domain is assured when applying the coupled strongly im­

plicit procedure to solve the resulting algebraic system of equations. This procedure 

will be described later in this chapter. 

4.3 Grid Generation Scheme 

For all geometries considered in this study the grids were generated by algebraic 

means. Grid clustering was achieved near boundaries when needed by using the 

following Roberts transformation listed in [7]: 

^ I F 1 + |y(2a + mj - 2a}/{f - ly(2« + 1)/A| + 2a}) 
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where y* is a coordinate in the transformed domain, y is a coordinate in the physical 

domain and h is the maximum value in y direction. 

For this transformation, if a = 0 the mesh will be refined near y = h only, 

whereas, if a = 0.5 the mesh will be refined equally near y = 0 and y = h (see Fig. 

4.1). In the actual computation the inverse transformation of Eq. (4.3) is more useful. 

The inverse transformation is: 

Ti  +  2a)[(^ + l) / { /3  - l)]egp[(y* - a)/(l -a ) ] - f i  +  2a  
(2a + l){l + l(^+l)/(;a-l)|e»p|(!,'-a)/(l-a)|} ^ 

In Eqs. (4.3) and (4.4), is a stretching parameter for controlling the grid 

clustering. Its value should be greater than one. As 13 increases, the distribution of 

the grid becomes more and more uniform. 

With a slight modification, Eq. (4.4) can also be used to control the grid stretch­

ing in a curvilinear coordinate system. For example, in the circular cylinder case 

considered in this study, Eq. (4.4) was modified to cluster the grid in both the cir­

cumferential and radial directions by changing y to 9 and r respectively in the above 

equation. The grid layout for different problems generated by the variation of Eq. 

(4.4) will be shown in the results chapter. 

For the three-dimensional liquid sloshing flow calculations, the grid generation 

was not a simple task. The major difficulty in generating grids for this flow arises 

from the combination of the wall of the spherical container and the irregular geometry 

of the free surface which is moving in time. It is a formidable job to generate an 

ideal grid in this case, since almost any choice of grid system is bound to encounter 

difficulties in high grid skewness, high aspect ratio and singularities somewhere in 

the domain of interest. Use of a general three-dimensional grid generation code, such 
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(a) a = 0 

(b) a = 0.5 

Figure 4.1; Grid clustering demonstration for a = 0 and 0.5 
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as 3DGRÂPE [52], which provides a capability for controlling the grid skewness, 

stretching and orthogonality, was initially considered for this case. However, since a 

new grid must be generated at every time step in this unsteady calculation (and hence 

3DGRAPE would need to be called to do this in every time step), it was anticipated 

that a tremendous amount of computer time would be required in this part of the 

calculation. Furthermore, it was believed that some of the difficulties mentioned 

above would still exist even with the use of 3DGRAPE. Therefore, 3DGRÂPE was 

abandoned and a simple algebraic method, which can match the free surface shape 

at any instant of time and adapt all or part of the grid to follow the free surface, was 

finally developed to generate grids for this case without solving complicated partial 

differential equations. This grid generation scheme was very easy to use and was 

efficient. Only a tiny fraction of CPU time was spent in this part of calculation. 

However, the scheme still suffered from the above grid problems to some extent. 

This grid generation scheme will be briefly described below. 

4.3.1 Grid Generation For Three-Dimensional Liquid Sloshing Flows 

The grid system for this case can be seen in Fig. 4.2. In order to fit the boundaries 

easily on both the free surface and the wall of the spherical container, a cylindrical 

coordinate like grid system was adopted here. At each plane of constant «33, a two-

dimensional grid was generated with the grid stretching in the radial direction by Eq. 

(4.4) and a uniform AO increment in the circumferential direction. Eq. (4.4) was also 

used for controlling the grid stretching in the 233 direction. 

At time zero the free surface is flat and normal to the X33 axis. The container is 

started in a motion and therefore the free surface begins to change its shape. After the 
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^ — ^mo« (free surface) 

j k = l (singular plane) 

j = jmax (wall of the spherical container) 

Figure 4.2: Coordinate system for liquid sloshing problem 
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first time step, a new free surface is calculated by solving the free surface kinematic 

equation, i.e., Eq. (3.7) and this new free surface is no longer flat. 

A new grid has to be generated for the new physical domain under this new free 

surface. Since the free surface could be of any arbitrary shape at any instant of time, 

the following grid adaptation strategy was used to follow the free surface shape with 

the grid generation technique mentioned earlier. 

1. Locate the zgg coordinate of the highest free surface point, say (see Fig. 

4.3). 

2. Calculate the free surface tracking angle, and rotate counterclockwise the 

X2i and zgg axes by this angle (see Fig. 4.3). The new coordinate system after 

this rotation is denoted as the zg coordinate system. The rotation angle, <f>r, 

is shown in Fig. 4.3. It is the angle formed by the horizontal axis, Z21j and the 

line formed by connecting two free surface points at the wall of the tank at the 

®22 — ® plane. 

3. Construct a horizontal plane which is orthogonal to the zgg axis and passes 

through Zf^^gf^. This plane should form a circular plane after intersecting with 

the wall of the spherical container (see Fig. 4.3). 

4. Generate a provisional three-dimensional grid for the domain enclosed by this 

circular plane (A; = kmax plane) and the wall of the container by the algebraic 

grid generation technique mentioned earlier. This provisional grid (see Fig. 4.3) 

does not have the correct free surface height (except at the highest free surface 

point) and does not have the final «33 coordinate for all grid points. However 

this provisional grid will match with the new free surface shape and all grid 
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liquid 
step 1 

"high 

liquid 
8tep2 

max 
circular plane 

liquid free surface 
step 3 8tep4 

provisional grid 

Figure 4.3: Basic grid generation procedure for 3-D liquid sloshing problem 



www.manaraa.com

65 

points below this free surface will gradually adjust its coordinates to follow the 

free surface smoothly after the following grid adaptation procedure is complete. 

5. Interpolate the corresponding free surface height for each provisional grid point 

at the k = kmax plane based on the free surface height which is obtained 

from the free surface kinematic equation, Eq. (3.7). One dimensional linear 

interpolation for the free surface height along the radial direction was used 

to complete this procedure for each 0 direction. This procedure is necessary 

because the and zgg coordinates of the provisional grid points and those 

of the original grid points at the free surface are different. The location of the 

free surface at the wall of the container remains unchanged. So far, new grid 

points at the free surface have been generated at this step. 

6. Adjust the zgg coordinate (height) for every grid point of the provisional grid 

from level k = 2 to k = fcniaœ—1 the following formula: 

(4'») 

where 3:33)? • & is the local provisional a?99 coordinate, (Azh 2 u is the local 

233 coordinate difference between the free surface and the highest point of the 

provisional grid, (see Fig. 4.4) and {x)ij^k " ̂ kcof multiplication factor 

which linearly decreases the amount of height adjustment for all provisional 

grids from one at the free surface to zero at the bottom of the container. The 

expression for {x)ij^k 

where zq, and 2 are defined in Fig. 4.4. 
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max 

provisional grid line (z) 

^high point 

Figure 4.4: Notation for grid adjustment step 

7. Adjust the and £32 coordinates of the grid points at the wall of the con­

tainer based on the new 233 coordinate at the wall. This procedure is necessary 

because the adjustment at step 6 does not account for the geometry of the wall. 

4.4 Metric Term Evaluation 

To satisfy the so-called geometry conservation law when the governing equations 

are written in a strong conservation law form, Hindman [53] showed that the metric 

terms, such as (y, Vxt ••• J,..., etc., should be evaluated with the same differ­

encing scheme used for the spatial derivative terms in the governing equations. All 
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metric terms were therefore evaluated by a second order central difference formula in 

accordance with the discretization scheme described above. A typical term such as 

was represented as follows: 

- ®i-l) 

For the boundary points, a central difference formula was still used. This required an 

extra point outside the domain which was determined by a simple one dimensional 

extrapolation from the interior points such as: 

where % is either x, y ot z. This practice is actually identical to the use of a 3-point 

second order one-sided difference within the domain; however, it it much simpler to 

program the procedure that utilizes extrapolation, especially for a three-dimensional 

code, since metric terms at the boundary points are then calculated by the same 

formula as those at the interior points. 

The metric terms, and defined in the three-dimensional flows were 

calculated in exactly the same way as above. However, adjustments were needed at 

two types of singular points that exist in the current coordinate system. The first 

type of singularity occurs at j = 1 and & = 2 to kmax- These points all have the same 

coordinates for t = 1 to imax- The second type of singularity occurs at & = 1 where 

points from t = 1 to imax and j = 1 to jmax all have the same coordinates. The 

first type of singularity occurs because a line has been shrunk to a point; however, at 

the second singularity, a surface has been shrunk to a point. Special treatment was 

required for calculating metric terms at these singular points. Fortunately, it was only 

necessary to evaluate metric terms at two singular points in the present formulation. 
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These were the points at the center of the free surface (i, 1, kmax) and at the bottom 

point of the container (t, j, 1). The metric terms at the center point of the free surface 

were required in the implementation of the free surface stress boundary conditions. A 

simple average of the metric terms at neighboring points on the free surface was used 

for that point in this study. At the bottom of the container the metric terms were 

required in the implementation of the pressure wall boundary condition. Fortunately, 

the grid line j = 1, was always normal to the wall at that point due to the use of 

the «3 coordinate transformation. This property ensured that the SB33 momentum 

equation written in the physical domain became the normal momentum equation 

and hence could be used at this boundary point directly without using any metric 

quantities. However, nonuniform differencing had to be used to represent the spatial 

derivative terms. 

First-order differencing was used to evaluate the grid speed terms i for all points. 

This involves evaluating a term such as: 

4.5 The Boundary Condition Implementation 

As will be described later, the coupled strongly implicit procedure was used to 

solve the algebraic system of equations. All boundary conditions (equations) were 

coupled into the system of equations and solved fully implicitly. This treatment is 

believed to be more robust and straightforward than the explicit treatment of the 

boundary conditions or the treatment used in the ADI type of scheme in which some 

of the boundary conditions must be evaluated on the RHS. Some specific implemen­

tations of boundary conditions are briefly described as follows. 
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4.5.1 Extrapolation 

As mentioned earlier in the section on boundary conditions, extrapolation was 

used to obtain variables at the extra points outside the computational domain. The 

following second order extrapolation formula was used for the point outside the com­

putation domain: 

<l>)p = 3^)p_i - ̂)p-2 + <i>)p-Z 

or 

<f>)p = - 3<^)p^2 + ̂ )p+3 

depending on the location of p. In the above extrapolation <f> represents a dependent 

variable and p indicates the spatial location of the variable. For example, for two-

dimensional flows, the pressure at the inlet (p| ) was extrapolated from the interior 

points as: 

PI = 3p2 - 3P3 + P4 

and the u velocity at one station outside the domain («imaaj+l) extrapolated 

from the interior points as: 

~ ^^imax ~ 1 ^iTnax—2 

The above second-order extrapolation is indeed the Lagrangian formula applied for 

the computational domain where a uniform grid spacing is assumed. This treatment 

is actually identical to the use of a 3 point second order one-sided difference for the 

first-order spatial derivative terms at the boundary points. 

For some cases (free surface height and pressure at the edge of the free surface, 

see next subsections), the extrapolations were done in the physical domain. The 
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®*i ®t+l ®i+2 ^3 

Figure 4.5: Notation for the Lagrangian formula 

Lagrangian formula for a nonuniform grid spacing (physical domain) (see Fig. 4.5) 

was used. It can be expressed as: 

+ Hi^i+2) + c<^(®t+3) (4.7) 

where 
{ x j  - - gt-t-3) 

(®t+l -  ®t-}-2)(®t+l -  ®2+3) 

(®i -®i+3)(®i-®i+l) 

(®t+2 -®t+3)(®i+2 -®t+l) 

(®i -  ®t-f l)(®t -  ®t+2) 

(®t+3 -  ®i+l)(®t+3 -  ®i+2) 

4.5.2 Flow variables at the singular points 

For 3-D flows, special treatment was required due to coordinate singularities 

occurring at boundaries. Instead of deriving a special governing equation at the 

j = 1 singular line, the above extrapolation scheme was applied in the computational 

domain to obtain flow variables. It was expressed as: 

- W?=2 + ̂ )j=3 (4.8) 

where ^ + TT is the location at 180 degrees from the point of interest 0 (see Fig. 4.6) 

and <t> represents the flow variables. After the solution had been obtained, the flow 
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singularity 

Figure 4.6: Notation for the extrapolation at j = 1 

variables at the j = 1 singular line were determined from Eq. (4.8) which can be 

expressed as: 

= 5 - «1=3 + «'±21 (4 ») 

The ^'s evaluated from Eq. (4.9) for all i's (circumferential direction) were then 

averaged to obtain the final value. 

For & = 1, the pressure boundary equation at the wall of the container can 

not be directly used because of the singularity (no metric terms exist). The «33 

component of the momentum equation written in the physical domain was applied 

at this point in place of Eq. (3.2) due to the fact that the £33 axis is always normal 

to the wall of the container at this point in the 13 coordinate system. After applying 

the noslip condition at this point to simplify the equation, the following expression 

for the pressure boundary condition at the point & = 1 results: 

3̂  = - «3,3 + (•»•!») 
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A one-sided nonuniform differencing formula was used to represent the derivative 

terms in the above equation. The above equation was applied to obtained the pressure 

at the A; = 1 point after the flow solution had been obtained. 

4.5.3 IVee surface 

In order to apply the shear stress equations at the free surface boundary, a local 

unit normal and two unit tangential vectors need to be determined. The expressions 

for these unit vectors at the free surface are given in Appendix C. After the unit 

vectors are defined, the shear stress equations then must be decomposed from the local 

coordinates (n, T^, Tg) to the global coordinates, zg and the generalized nonorthogonal 

coordinates, z. The following equalities were used to relate these coordinates: 

U r i = V - T i =  u ^ i T i i  

Ut2 = V-72= «3, r2i 

Un = V •h = 

and 
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After applying the above relationships to the shear stress equations, the following 

equations written in generalized coordinates are obtained: 

[(«r/i + + ^ZiW = 0 (4.11) 

where fisl for the first tangential stress equation and fis 2 for the second tangential 

stress equation. The normal shear stress equation becomes: 

2 , dua: , dn: , K 
, - -^ = 9 (4.12) 

where ij and k range from 1 to 3 respectively. 

Second-order central differences were used to represent the spatial derivative terms 

in Eqs. (4.11) and (4.12) in the zi and zg directions (parallel to the free surface) and 

first-order one-sided backward differences were used to represent the derivatives terms 

in the zg direction (normal to the free surface). The continuity equation which was 

also used at the free surface boundary was differenced in the same way. These four 

equations were coupled with the governing equations written at the interior points 

and solved simultaneously. 

The free surface kinematic equation, Eq. (3.7), was used to explicitly determine 

a new free surface position after the flow solution for the entire domain was obtained. 

The new free surface function F was obtained by the following expression: 

f + AT({.33 + 

dF 
-ih + («31 + /lifc®3Jb)'^l,l + («32 + /2fc®3Jb)' 'l,2}^ 

OF 
-{z2 4- («31 + /iib®3ifc)»;2,l + («32 + /2ib®3fc)'^2,2}^) (413) 

Central differences were usually used to represent the spatial derivative terms in the 

above equation. However, for one of the cases investigated in this liquid sloshing 



www.manaraa.com

74 

study, upwind differences were also used to represent these terms to suppress a saw-

toothed profile in the free surface. The effect of this upwind differencing and the free 

surface smoothing is also discussed in Chapter 5. 

Equation (4.13) is only valid for the interior points. At the edge of the free 

surface, i.e., i = l,tmax« k = kmax and j = jmax) the Lagrangian extrapolation 

formula, Eq. (4.7), was used in the zi (radial) direction to obtain the free surface 

positions for all 9 directions from the free surface position at the interior points. 

4.5.4 Pressure at the wall 

The implementation of the pressure boundary equation at the wall (especially 

how this equation was coupled into the governing equations) will be explained in this 

section. Equation (3.2) was rearranged as: 

On the LHS of the above equation, all terms were treated implicitly. The finite-

difference representation of each term on the LHS of the above equation is described 

below. 

{n,m®3i + ^2,ni^i " ̂3n + En + ̂ [^Vl,iV2,i 

du 
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dz2 ~ ^3njffiax—l 

~ ̂ Snjmax ~ ̂ ^3njmax-l •+" ^Znjmax—2 

AU the above quantities fit into the 3-D CSIP 7-point molecule (see CSIP section in 

this chapter) except the quantity, «Snjmo®—2' ^^ich appears in the representation 

of the second-order viscous term. This quantity was lagged to the RHS. 

The above equation was not applied at the edge of the free surface. Instead the 

Lagrangian extrapolation formula, Eq. (4.7), was used in the Z2 (radial) direction to 

provide the pressure boundary equation at the wall of the container for all 9 directions 

from the pressure data at interior points of the free surface. 

4.0 The Artificial Compressibility Method for Incompressible Flows 

The final governing equations, Eqs. (2.35) and (2.36) together with the boundary 

equations at the walls, Eqs. (3.1) and (3.2), and the boundary equations at the 

free surface, Eqs. (3.3) to (3.6), close the system of equations once the free surface 

position is updated by the kinematic equation, Eq. (3.7). The continuity equation, 

Eq. (2.35), serves as a compatibility condition for incompressible flows to ensure that 

the pressure and velocity solutions which satisfy Eq. (2.36) provide a divergence-free 

velocity field as well. A form of the artificial compressibility method (first proposed by 

Chorin [22]) was used in this study. This method gained popularity recently because 

several researchers, including Rogers and Kwak [19], Merkle and Athavale [20] and 

Pan and Chakravarthy [21], have shown that this procedure can be extended to 
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calculate unsteady incompressible flows by performing subiterations at each physical 

time step until a divergence-free solution is obtained for velocity. With the use of this 

method, a lengthy derivation (especially for the present liquid sloshing problem which 

involves several coordinate rotations and transformations) for the pressure Poisson 

equation was avoided. The four unknowns, and p, are obtained simultaneously 

by this procedure. This artificial compressibility method was adopted in this three-

dimensional study and combined with the strongly implicit procedure which will be 

described in the next section. 

The first step in doing this is to add an artificial time derivative of pressure, 

to the continuity equation. This artificial pressure term not only provides a linkage 

between the time variation of pressure and the divergence of the velocity, but also 

makes the coupled system nonsingular if central differences are used in the continuity 

equation. That is, if central differences are used for the spatial derivatives, the coupled 

system would be singular without the addition of the artificial time derivative. The 

final equations become: 

where r* is a pseudotime. Note that this pseudotime is also added to the free surface 

continuity equation, Eq. (3.3). 

(4.15) 

and 

^«3n 
dr 

= ''l,m®3i + " 9Zn + (4.16) 
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Figure 4.7: Two-dimensional computational molecule for AJj, A^j,,.., A^ j 

It is important to add this artificial time term to the continuity equation after 

the generalized coordinate transformation is applied instead of before if the grid is 

moving in time. Pan and Chakravarthy [21] have pointed out that for a moving grid 

system, the divergence of the velocity would not be zero if this term was added before 

the generalized coordinate transformation even in steady state calculations. 

4.7 Coupled Strongly Implicit Procedure 

The coupled partial differential equations will become a coupled algebraic system 

of equations after the above finite-difference discretization scheme is applied to each 

derivative term of the governing equations. Since the derivative terms in the governing 

equations were treated in a fully implicit manner, the algebraic system of equations 

for the two and three-dimensional equations will take the following forms: 
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t - 1  

i + 1 

Figure 4.8: Three-dimensional computational molecule for j Aj"j A^j ̂  

For 2-D: 

For 3-D: 

^hhk%hk-l + &%-!,;,& + K,j,k%hk 

+ 4,J,&%,;+!,A = \j,k (4-18) 

where the coefficients À\ to for two-dimensional equations and i4^ to Af' for 

three-dimensional equations are 4x4 matrices and g is the vector of unknowns (de­

pendent variables), {u,v,p,T)'^ for 2-D and for 3-D, and b is the RHS 

vector. The difference molecule can be seen in Figs. 4.7 and 4.8 for two-dimensional 

and three-dimensional equations respectively. The A^s are the coefficient matrices for 

the unknowns at the positions indicated in the figures. Equations (4.17) and (4.18) 
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can be expressed in the following matrix form: 

= b (4.19) 

where 

imjm im,jm imjm imjm 

is for the two-dimensional equations and 

^subscript a represents point (1,1,1) 
^subscript /3 represents point 
^subscript 7 represents point {im,jin,km) 
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is for the three-dimensional equations. 

Detailed discussions of the this strongly implicit procedure for two and three-

dimensional equations can be found in several sources [29], [45], [30], [44], [43] and 

therefore only the basic concept will be described in the following paragraphs. Inter­

ested readers should refer to the literature cited above to obtain detailed formula. 

A general iterative formula for Eq. (4.19) may be obtained by adding an auxiliary 

matrix [P] to each side of Eq. (4.19) and adding iteration numbers to q as: 

[A + p]^+l,*!+l = + b (4.20) 

where n is the time level and k is the iteration level, and [P] is so chosen that the 

decomposition of [v4 4- P] can be obtained conveniently. In general, the convergence 

rate becomes faster as [i4 + P] becomes closer to [^4], or in other words, as the scheme 

becomes more "implicit". In this regard [P] = 0 gives the fastest convergence. In 

effect the solution is obtained by "one iteration", q = [yl]~^6, although the iterative 

solutions are necessary when such a direct inversion is difficult or costly. 

In the strongly implicit method, [P] is chosen that (A + P] can be decomposed 

as: 

[ A ^ P ]  =  [ L \ [ U \  (4.21) 

where [ L ]  and [ U ]  are, respectively, lower and upper triangular matrices, each of which 

has only five nonzero diagonals for the two-dimensional 9-point formula and four 

nonzero diagonals for the three-dimensional 7-point formula in each row. Inversion 

of a matrix in the form of [L][U\ is very easy. If [P] is a minor correction to [j4], 

then the iterative scheme represented by Eq. (4.20) may be regarded as strongly 

implicit. The above [L] and \U] matrices were constructed to have nonzero diagonals 
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at the same positions as the original matrix [A\, so that no additional storage was 

needed. However, there is a numerical error prior to convergence associated with this 

decomposition because the matrix resulting from the product of [L] and [17] is not 

identical to the [A] matrix and the error is due to the [P] matrix. The issue now is 

how to minimize the effect of the auxiliary matrix [P] in order to hasten convergence. 

Usually the effect of the [P] matrix is small and if nothing is done to reduce the effect 

of this auxiliary matrix, the method is called incomplete L-U (ILU) decomposition. 

The errors vanish, of course, if the iterative procedure defined by Eq. (4.20) converges. 

However as mentioned before, the scheme may converge faster if the effect of the [P] 

matrix is minimized. 

Stone [29] proposed that a partial cancellation parameter be introduced to reduce 

the influence of this extra [P] matrix. The original Stone's SIP contains only a 5-

point formula and it was extended to a 9-point formula by Schneider and Zedan [30] 

for two-dimensional scalar equations using the same idea. The new 9-point formula 

was named the modified strongly implicit procedure (MSIP). The MSIP formula, 

which was found to be less sensitive to the partial cancellation parameter and also 

showed better convergence properties than the SIP formula, was used for the two-

dimensional equations in the present study. Since a coupled system of equations was 

solved in this study, the scalar MSIP formula has been modified to solve coupled 

equations. The extension to a coupled formula is very straightforward (see Appendix 

F) and therefore only the scalar version is demonstrated here. An explanation of the 

extension to a coupled system of equations can be also found in Zedan and Schneider 

[44], where the 5 point SIP formula was used. In the MSIP method, the [L\ and [f7] 
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matrices are chosen as: 

fi,j [ U ]  =  

The formulas used to calculate the elements in [ L ]  and [[/] from the original 

matrix [A] are listed in Appendix F. After [L] and [[/] are obtained, the following 

procedure is used to obtain the unknown vector q. 

Letting 

_ ^+l,fe+l _ ^4 22) 
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and a residual vector 

^n+l,k ^ g_ (4.23) 

Eq. (4.20) becomes 

[A + = Rn+l,k (4.24) 

Replacing [yl -f- f] by the [I][î/] product gives 

Defining an provisional vector W by 

^ |j^j^+l,fc+l (4.25) 

the solution procedure can be written in two steps: 

Step 1: 

[£]j^n+l,A+l ^ ^n+l,fc (4.26) 

Step 2: 

= ^n+l,*:+l (4,27) 

The process represented by Eqs. (4.26) and (4.27) consists of a forward substitution 

to determine ;y^4-l,&4-l followed by a backward substitution to obtain ^+1,^4-1 

The coefficient matrix [j4], and so the [L\ and [U] matrices, have to be updated at 

each iteration if linearization errors are to be removed. 

For three-dimensional flows, the above procedure is applied to 7-point formula 

in an exactly the same way. The [L] and [U] matrices for three-dimensional equations 
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are listed as follows: 

[I] = %j,k ft,j,k %j,k 

[ U ]  =  

1 ^i,j,k '^i,j,k \j,k 

The relationship between the elements in [ L ]  and [ U ]  and those in the original matrix 

[A] for three-dimensional equations is also given in Appendix F. Interested readers 

can also refer to the paper by Weinstein, Stone and Kwan [45]. 

The two-dimensional 9-point MSIP method requires nine arrays of dimension 

(tm,jm,4,4) in the coefficient matrix for a coupled system or five arrays of the same 
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dimension for the reduced 5-point formula. In three dimensions, the 7-point CSIP 

method requires seven large arrays of dimension (tm,j7n,A;m,4,4) in the coefficient 

matrix. It should be noted that Zedan and Schneider [46] also derived a three-

dimensional 19 point formula for the MSIP scheme for a scalar equation. This 19-

point formula was not used in this study simply because it requires significantly 

more computer storage (about 2.3 times) for a coupled system, than Stone's original 

three-dimensional 7-point formulation. 

4.8 Convergence Acceleration Techniques 

As for most central difference schemes, the time term serves to enhance the 

diagonal dominance. This time term is even more important when the continuity 

equation is coupled with the momentum and energy equations. When central dif­

ferences are applied to the spatial derivative terms in the continuity equation, the 

time term must be retained to avoid a singularity in the matrix system. Unlike the 

momentum and energy equations which possess nonzero diagonal terms from the dif­

fusion and conduction terms, the time term in the continuity equation bears all the 

burden of providing the diagonal dominance in this equation. Although the present 

method solves equations in a coupled manner, and the resulting coefficient matrix is 

in a block form, the diagonal dominance requirement for the continuity equation has 

been found to provide a good guideline to assure convergence of the coupled equa­

tions. Golub and Van Loan [54] provide the definition of diagonal dominance for a 

block system, but it was found impractical to use in the present work. 

Consistent with the above observations, it was found that if the steady state solu­

tion was the only concern, dual-time steps could be used to accelerate the convergence 
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Figure 4.9: Notation for the local time step computation for two-dimensional flows 

rate for low Mach number flows in the steady two-dimensional compressible calcu­

lations when an isothermal condition could be assumed. This dual-time technique 

applies a much smaller time step for the continuity equation than for the momentum 

equations. For the current formulation, the time step for the continuity equation is 

about the order of for low Mach number flows. This technique assures that 

the rapidly propagating pressure signal in low Mach number flows is resolved by the 

smaller time step used in the continuity equation which can be thought as an equation 

for pressure. 

In addition to the above special treatment for the time step in the continuity 
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equation, a local time step in the momentum and energy equations can be used to 

further accelerate the convergence for steady state flow calculations. This local time 

step employs a different time step for each grid point depending on the local speed 

of propagation for convective signals. The local time step was determined using the 

following formula: 
Arà 

where and ir^ are the local unit vectors along the ( and 17 directions, respectively, 

Ar^ and Arjf are the cell lengths in the ( and rf direction, respectively, and V is the 

local velocity vector (see Fig. 4.9). The final At is chosen by: 

At = <riDMIN(At^, Atff) (4.28) 

where <7^ is a parameter to further control this local time step and DMIN chooses the 

minimum value from its two arguments. The above formula was applied for each grid 

point. This formula was derived based the assumption that a local time step cannot 

exceed the time required for a fluid particle to travel across each cell in the unsteady 

calculations. This idea was adapted here for steady state calculations to estimate the 

maximum local time step. This choice of time step seems to be somewhat arbitrary. 

However, it was found that the procedure can accelerate convergence for steady state 

computations by a factor of about 2 to 3. The choice of (TJ needs to be determined by 

numerical experiments. The rule adopted in the present study was to choose as 

large as possible without causing the solution to diverge. The choice of <7^ depends 

on problems and flow types as well. For low Reynolds number problems, «rj can be as 
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high as 10^ and about the order of one, 0(1), for high Reynolds number calculations. 

This formula is simple and easy to use in the program. 

Since the time dependent aspects of the three-dimensional liquid sloshing flow 

calculations were of interest, the steady state convergence acceleration technique de­

scribed above could not be applied. However, in the artificial compressibility method, 

the time term in the continuity equation is artificial (in pseudotime) even for time ac­

curate calculations, and it was found that convergence was enhanced by using a heat 

pseudotime. This local pseudotime was determined based on the following criterion: 

where are the off-diagonal coefficient terms in the continuity equation and the 

summation is over the six neighboring points at each i,j,K location. The AT* is a 

local value and varies in space. The <T2 is a constant to further control the time step. 

The choice of (T2 problem-dependent. Usually a value of the order of one, 0(1), 

gave satisfactory results. 

4.9 Convergence Criterion and Solution Procedure 

For two-dimensional compressible calculations, the convergence criterion was 

based on the norm of all variables in a coupled sense. This criterion is as follows: 

4 X tm X jm 
< c, (4.30) 

v / 
where k is the iteration level, n the variable index, im the number of grid points in 

the X direction, jm the number of grid points in the y direction, qn a component of 
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the unknown vector 9, and qn^rma the root mean square value of qn. The criterion £ 

was generally set equal to 1.0 x 10""^. However, for three-dimensional incompressible 

calculations, the convergence at each physical time step was based on the divergence 

of the velocity field. This criterion was as follows: 

=  < 5 x  1 0 " ' ^  ( 4 . 3 1 )  

The solution procedure for two and three dimensional flows can be summarized 

as follows: 

Two-dimensional flow calculations: 

1. Set initial conditions (or guess for steady state computation). 

2. Generate grid. 

3. Construct the coefficient matrix [v4] and the right-hand-side vector 6. 

4. Call the CSIP solver to update solution (u, v, p, T); go back to step 3 and 

subiterate until convergence at each time step for unsteady calculations. 

5. Move to the next time step and go to step 3 until steady state solutions are 

reached or the specified time is reached. No subiteration is required in step 4 

if only steady state solution is desired. 

Three-dimensional liquid sloshing flow calculations: 

1. Set initial conditions. 

2. Update the free surface position at each time step by the kinematic equation 

based on the flow solution at the previous time step. 
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3. Generate the grid using the new free surface position. 

4. Construct the coefficient matrix [i4] and the right-hand side vector b. 

5. Call the CSIP solver to update solution («3^, p); go back to step 4 and subiterate 

(until convergence) to create a divergence free field at each time step. 

6. Go back to step 2 and move to the next time step. 
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6. RESULTS AND DISCUSSION 

The numerical procedure described in the previous chapter has been applied to 

both two-dimensional compressible and three-dimensional incompressible flows. Of 

particular interest in the compressible flow study is the performance of the present 

algorithm (pressure based scheme) over a wide range of Mach numbers. Also of inter­

est is the low Mach number regime, where convergence difficulties are often observed 

for other density based compressible flow schemes. The three-dimensional scheme is 

applied to study the complex time-dependent motion of liquid in a partially filled 

spherical container. This flow is especially challenging due to the three-dimensional 

motion of the free surface. Results obtained for these two types of flows are described 

in the next two sections. 

5.1 Two-Dimensional Compressible Results 

In order to evaluate the performance of the present numerical algorithm on two-

dimensional compressible flows, especially for a wide range of Mach numbers, several 

types of geometries and flow speeds were considered. They are summarized in Table 

5.1. It is believed that these cases are diverse and challenging enough to demonstrate 

the capabilities of the present algorithm. The results for these five test cases follow. 
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Table 5.1: Summary of test cases for two-dimensional compressible flows 

Case Description 
1. Developing flow in a channel. 

(Inlet Mach number = 0.05; 
inlet Reynolds number = 0.5, 10, 75, 500 and 7500) 

2. Driven cavity flow. 
(Mach number = 10"^ to 0.2; 
Reynolds number = 100, 1000 and 3200) 

3. Steady flow over a circular cylinder. 
(Inlet Mach number = 0.05; inlet Reynolds number = 40) 

4. Unsteady vortex shedding flow over a circular cylinder. 
(Inlet Mach number = 0.2; inlet Reynolds number = 100) 

5. Shock-boundary layer interaction problem. 
(Inlet Mach number = 2.0; inlet Reynolds number = 0.296x10^) 
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Figure 5.1: Geometry of a constant area, two-dimensional channel inlet 

5.1.1 Subsonic steady state flows 

5.1.1.1 Developing flow in a channel The first test case is flow in a con­

stant area, two-dimensional channel inlet with and without heat transfer. A uniform 

flow enters the channel and the velocity and temperature fields develop along the 

channel simultaneously. It is well known that an incompressible flow will eventu­

ally become fully developed with a parabolic velocity distribution. The centerline 

velocity will reach a value 1.5 times the inlet velocity. However, for an isothermal 

compressible flow, the velocity will continue to increase and eventually the flow will 

become choked [55]. This is due to the fact that the density of the fluid will become 
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smaller and smaller as the pressure continues to drop along the channel. Therefore, 

there will be no fully developed velocity profile for isothermal compressible flows in 

this channel configuration. The geometry of this test case can be seen in Fig. 5.1. 

Due to the symmetric nature of this channel flow, the solution was only computed 

in the upper half of the channel. Four cases with Reynolds numbers of 0.5,10, 75 and 

7500 and a Mach number of 0.05 were studied. The Reynolds number is based on the 

inlet velocity, bulk density and half width of the channel. Grids of 21x11, 21x11, 

31x11 and 41x11 points and nondimensional channel lengths of 2, 4, 30 and 3000 

were used for Reynolds numbers of 0.5, 10, 75 and 7500, respectively. The length of 

the channel for each Reynolds number was chosen to provide a reasonable distance for 

the flow to develop. The grid points were clustered near the inlet and the upper wall. 

The centerline velocity distribution along the flow development region is shown in 

Fig. 5.2. The present results were basically compared with calculations obtained by 

others for incompressible flows. Only the results presented by TenPas and Fletcher 

[26] were obtained with a compressible flow formulation. Due to the use of the 

compressible equations, the velocity proflle will never become independent of distance 

along the channel. However, in order to compare with the incompressible results in 

the literature, the converged velocity solutions from the present calculations were 

adjusted. Since the flnite-diflerence scheme maintained a constant mass flow rate in 

the channel at steady state, the velocities were decreased appropriately to compensate 

for the density decreases when comparing with incompressible results. This correction 

was made by TenPas and Fletcher as well for their compressible formulation. The 

agreement between the present results and those obtained by TenPas and Fletcher 

[26], Morihara and Cheng [56], McDonald, Denny and Mills [57] and Bodoia and 
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Figure 5.2: Predicted centerline velocity distribution for developing flow in a 
two-dimensional channel inlet 
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Osterle [58] is good. In Fig. 5.2, the results obtained by Bodoia and Osterle are 

from solutions of the boundary layer equations. It is clear that the boundary-layer 

assumption is no longer valid as the Reynolds number becomes smaller and smaller 

for the channel inlet, and the full Navier-Stokes equations must be solved in order 

to obtain the correct flow details in the flow development region. The convergence 

history of these four cases is shown in Fig. 5.3. It should be noted that for steady 

state calculations, subiterations were not used at each time step. 

Heat transfer results are also shown in Fig. 5.4. The Reynolds number in this 

case is 500 based on the hydraulic diameter D and the Prandtl number is 0.72. A 

temperature ratio of TwlT{=1.2 was maintained along the wall of the channel. A 

41x21 grid was used. The agreement of averaged Nusselt number with the results 

by Hwang and Fan [59] is good. The averaged Nusselt number is defined as: 

Nu = hmD/k  (5.1) 

where D is the hydraulic diameter, and k  is the thermal conductivity at the fluid 

inlet temperature and hm is the average heat transfer coeflUcient. The average heat 

transfer coefiicient, Am, is defined as: -

~ ylAT 

where the temperature difference, AT, is taken as the log-mean temperature differ­

ence 
( fu ,  -  Tj )  -  (T„  -  r» , . )  

tnHTw - TiWTw -

where 1]^ g. is the bulk temperature at each x  station. The total heat flux Q from the 

entry to z is: 
f x  dT 

^ = 2^ (5.4) 
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Figure 5.3: Convergence history for developing flow in a two-dimensional channel 
inlet 
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5.1.1.2 Driven cavity flow The two-dimensional driven cavity problem has 

been studied extensively by many investigators and has frequently served as a bench­

mark test case for incompressible Navier-Stokes calculations. The configuration for 

this flow can be seen in Fig. 5.5. The fluid initially is motionless inside the square 

cavity. Suddenly, the top lid is subject to a constant velocity and the fluid particles 

start to move due to the fluid viscosity. The flow pattern becomes very complex and 

can only be resolved computationally by solving the full Navier-Stokes equations. 

The flow pattern generally exhibits a very strong main vortex near the center of 

the cavity, and, depending on the magnitude of the Reynolds number, several weak 

eddies at the corners of the cavity. A very detailed analysis for this problem was 

presented by Ghia, Ghia and Shin [60] where a very fine grid (257x257) was used to 

compute the flow for Reynolds numbers ranging from 100 to 10,000. Their results, 

obtained with a coupled strongly implicit multigrid (CSI-MG) method, are usually 

considered as benchmark solutions for the cavity flow. Most investigators studying 

this flow reported velocity solutions only [60], [61], [62]. Only a few included solu­

tions for pressure and heat transfer [63], [64], [65]. For an incompressible flow, it is 

possible to obtain the pressure from the solution for velocity by solving the pressure 

Poisson equation. However, considerable computational effort is required to solve 

this elliptic equation with Neumann type of boundary conditions. It is the present 

author's opinion that pressure is a very important quantity in practical applications, 

and for some types of flow it provides the dominant contribution to the aerodynamic 

drag force. Therefore, it should always be reliably calculated instead of ignored. 

Results were obtained for Reynolds numbers of 100, 1000 and 3200 under an 

isothermal condition and a Mach number of 0.05. The temperature was assumed 
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Figure 5.4: Predicted average Nusselt number for developing flow 
two-dimensional channel inlet, Ae=500, Pr=0.72, = 1.2 
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Figure 5.5; Geometry of the driven cavity flow 
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Figure 5.6; 71x71 grid layout for Ee=3200 calculation 
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Figure 5.7: Predicted u velocity component along the vertical centerline of the 
two-dimensional driven cavity, for iZe=100, 1000 and 3200 
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Figure 5.8: Predicted v  velocity component along the horizontal centerline of the 
two-dimensional driven cavity, for iZe=100, 1000 and 3200 
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to be uniform and constant because (1) the temperature variations would be very 

small at a Mach number of 0.05 and less if an isothermal wall boundary condition 

was assumed and (2) it would be more convenient to compare with the results in the 

literature where an isothermal flow condition was usually assumed. Of course, if the 

temperature distribution is of interest, the energy equation must be included as it 

was for the heat transfer cases to be discussed later. The grid lines were clustered 

near the walls using Eq. (4.4) in both the x and y directions. The 71x71 grid used for 

the i2e=3200 case is shown in Fig. 5.6. The u velocity component along the vertical 

centerline is shown in Fig. 5.7 and the v velocity component along the horizontal 

centerline is shown in Fig. 5.8 for these three Reynolds numbers. The agreement 

with the results by Ghia, Ghia and Shin [60] and Goodrich and Soh [62] is excellent 

for iZe=100 and 1000 and is good for i2e=3200. The effects of grid refinement are 

also shown in these figures. Figure 5.9 compares the pressure distribution along 

the stationary wall obtained by the present method with those obtained by Ghia, 

Hankey and Hodge [66]. The number in the x coordinate of Fig. 5.9 represents the 

four corner points of the cavity as indicated in the insert. The streamline pattern, 

pressure contours, and velocity vectors for Ae=3200 are shown in Fig. 5.10. It should 

be noted that for Reynolds number lower than 1000, the fiow patterns are quite similar 

except that the strength of the eddies at the two corners of the bottom wall becomes 

stronger and stronger and the center of the main circulating region moves closer to 

the geometric center of the cavity. However, for Reynolds number higher than about 

2000, a third eddy gradually appears near the left upper corner and increases in 

strength as the Reynolds number becomes higher and higher. This third eddy can 

be easily seen in Fig. 5.10. 
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Figure 5.9: Predicted pressure coefficient, Cp, along the stationary walls of 
the two-dimensional driven cavity, (a) Ae=100, (b) Ae=1000 
i C p  =  R e x { p -  P r e / ) / P r e )  
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For the grid points used (indicated in the figures), the convergence rate for 

/2e=100 and 1000 compares very favorably with that reported by Mansour and 

Hamed [63] where a coupled scheme in primitive variables was used for the incom­

pressible Navier Stokes equations. Usually less than 200 iterations were sufficient to 

reduce the residual to the desired level. For the Ae=3200 case, slow convergence for a 

71X 71 grids was encountered (more than 2000). A similar difficulty at this Reynolds 

number was also reported by Napolitano and Walters [61]. It is suspected that the 

slow convergence at this Reynolds number is due to the strong transient nature of 

the flow where several significant secondary flows appear and interact with the main 

c i rcula t ing  vor tex .  Goodr ich  e t  a l .  [67]  has  found the  f low to  be  uns teady a t  Re ~  

5000. 

Heat transfer phenomena were also studied for Reynolds numbers of 100 and 

1000 and a Mach number of 0.05. Most of the heat transfer studies on the cavity 

configuration found in the literature were devoted to natural convection [68] where 

the four walls of the cavity were kept stationary, and the flow was induced by the 

buoyancy force which was created by a temperature difference between one wall and 

the others. Very few results can be found in the literature for the driven cavity 

configuration [65], [69]. 

The local Nusselt number along the top moving wall (Tm) which is hotter than 

the stationary walls (Tg) for i2e=100 and 1000 with Pr=1.0 is shown in Fig. 5.11. 

The temperature ratio was 7a/7m=0.9 (or Tm/7!s=l.ll). The local Nusselt number 

in Fig. 5.11 is defined as: 

Nu = ^ (5.5) 

where L is the length of the cavity and k  is the thermal conductivity at the tempera-
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Figure 5.10: Results for the two-dimensional driven cavity flow, iZe=3200, (a) 
streamlines, (b) pressure contours, (c) velocity vectors 
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Figure 5.11: Local Nusselt number at the top moving wall of the two-dimensional 
driven cavity 
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tuie of the hotter moving wall and h is the heat transfer coefRcient (based on the AT 

= Tm • T3). The results for Ae=100 were compared with those obtained by Chen et 

al. [65] (using a 41x41 uniform grid) and BurgrafF [69] (using a 21x21 uniform grid). 

The good agreement is obvious. For this Reynolds number, a nonuniform 21x21 grid 

was used and 140 iterations were required to obtain the converged solution. The 

results for jRe=1000, however, don't agree well with those of Chen et al. [65] (using a 

41x41 uniform grid) near the left corner of the top wall. Further research is needed to 

resolve this discrepancy. For the iZe=1000 calculation, a nonuniform 39x39 grid was 

used and more than 500 iterations were required to obtain the converged solution. 

In order to study the effect of Mach number, the driven cavity case for i2e=100 

with a 21x21 grid was computed with Mach numbers ranging from 10~^ to 0.2 

and an isothermal condition. The number of iterations required for the various Mach 

numbers is listed in Table 5.2. It indicates that for Mach numbers of 10~^ and lower, 

the number of iterations required increases by a factor of more than two. Even with 

this increase, the algorithm is still very efficient for this range of low Mach numbers, 

at least compared with the results reported by Mansour and Hamed [63]. As one can 

expect, the solutions at the above Mach numbers were almost identical since flows 

at very low Mach numbers are effectively incompressible. The present work may be 

one of the first attempts [70] to compute this flow using the compressible form of the 

Navier-Stokes equations. Most numerical solutions for this problem have been based 

on the incompressible Navier-Stokes equations. 

It is important to mention that no pressure oscillations were detected despite 

using central differences for the cavity flow cases, even for the highest Reynolds num­

ber. This unexpected result might be attributed to : (1) use of the compressible form 
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Table 5.2: Mach number effect for cavity flow, ilc=100, 
21x21 grid 

Mach number 0.2 0 .1 0.05 10-% 10-3 10-4 
No. of iterations 25 27 33 85 85 85 

which contains the pressure information in the time and other first order derivative 

terms and (2) the treatment of the pressure boundary condition at the wall, which 

employs the momentum equations to evaluate the pressure derivative at the wall in 

an implicit manner. Both of these procedures enhance the pressure-velocity cou­

pling, thus tending to remove the pressure oscillation. It is almost certain that the 

compressible form of the equations can provide a better pressure-velocity coupling 

for low Mach number flows, at least for the driven cavity flows. The results for the 

three-dimensional driven cavity flows also confirmed this pressure smoothing prop­

erty. The three-dimensional driven cavity results will be presented in a section to 

follow. Despite its success on the driven cavity cases, further study is required in 

order to determine if this treatment will also work well for a variety of geometries in 

the low Mach number regime. 

5.1.1.3 Steady flow over a circular cylinder, Re = 40 This case is quite 

different from the previous one. It involves a blunt body immersed in an external 

stream, conceptually infinite in extent. It is known [71] that steady flow over a circular 

cylinder can persist up to Reynolds number about 40 (based on diameter). As the 

Reynolds number is increased further, the flow is expected to become unsteady. Due 

to symmetry, only the flow in the upper half plane was calculated. An 0-type grid 

was generated with clustering near the wall region and uniform increments in the 0 



www.manaraa.com

Ill 

fatfield 

boundaiy 

inflow outflow 

boundary cylinder boundary 

20 diameters 

symmetiy 

boundaiy 

Figure 6.12: Labeling of boundary conditions for steady flow over a circular cylinder 
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direction. Grid sizes of 31x41, 41x51 and 81x51, were used. The flow was assumed 

to be isothermal. The outer boundary was located 20 diameters from the cylinder in 

an attempt to minimize the influence of this artificially imposed boundary. With an 

0-type grid, the definition of inlet, farfield and exit boundaries is not obvious. The 

designation of boundary types used in this study can be seen in Fig. 5.12. Majumdar 

and Rodi [72] also used a similar idea to partition the outer boundary for their O-

type grid. The solution was not sensitive to this partition if the outer boundary was 

located far enough from the cylinder. 

The distribution of skin friction coeflicient along the 9 direction is shown in Fig. 

5.13. The results are nearly grid-independent. Good agreement with the numerical 

results by Majumdar and Rodi [72] and the experimental results by Acrivos et al. 

[73] is observed. The pressure coefficient is shown in Fig. 5.14. The present results 

were compared with those obtained by TenPas and Fletcher [26], Rhie [74] and Son 

and Hanratty [75]. Good agreement was observed. Figure 5.15 shows the streamlines 

and pressure contours. 

The number of iterations required was between 150 and 200 for the grid sizes 

studied. The Mach number was 0.05. In this case, the simplified form of the pressure 

boundary condition, was used because the full pressure boundary condition 

had not been extended to curvilinear boundaries at the time these calculations were 

made. This condition, which is widely used, does not guarantee a wiggle free pressure. 

A small amount of smoothing was added to suppress the pressure oscillation in the 

form [76] 

= + + (5.6) 

A value of w between 0.05 and 0.2 was found to be satisfactory. The widely used 
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Figure 5.13: Skin-friction coefficient, Cy (=Tw/Re^^^), for flow over a circular 
cylinder, Re=40 
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Figure 5.14: Pressure coefficient, Cp (=(p—poo)/ \pooû%^), for flow over a circular 
cylinder, /2e=40 
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Figure 5.15: Streamlines and pressure contours for flow over a circular cylinder, 
iZe=40, (a) streamlines, (b) pressure contours 
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(a) (b) 

Figure 5.16: 81x101 0-type grid, i?e=100, (a) entire domain, (b) close-up 

implicit smoothing method [7] was also tried and it was found that the present explicit 

smoothing was less sensitive to the smoothing parameter w. 

5.1.2 Unsteady flow over a circular cylinder, Re = 100 

This case was used to demonstrate the application of the present procedure to 

unsteady flows. This flow has been studied very extensively in the literature [77], 

[78]. At this Reynolds number, the flow is no longer symmetric and thus, flow must 

be computed in the full 360 degree domain. An 0-type 81 x 101 grid was used with 

mesh clustering near the wall and in the wake region. Figure 5.16 shows this grid 

layout. 

Before performing calculations on this unsteady problem, the implementation 

of periodic boundary conditions in the $ direction was verified to be trouble-free by 

running the previous steady state case (Ae=40) again with the full 360 degree domain 
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and confîiming flow symmetry. The outer boundary was located 20 diameters from 

the cylinder (see Fig. 5.17). An asymmetric trigger technique has been generally used 

by other investigators [77] to promote the early occurance of the vortex shedding for 

low Reynolds number flows. However, for a higher Reynolds number calculation, Pan 

and Chakravarthy [21] reported that the flow developed an asymmetric flow pattern 

without artificial perturbation. In this study, since the final periodic unsteady so­

lution was of primary interest, the initial condition was efficiently generated by the 

steady state acceleration technique (local time) which quickly set up a flow pattern 

with a little asymmetry. The asymmetric trigger technique suggested by Lecointe 

and Piquet [77] was not needed. Starting from this initial solution, a constant nondi-

mensional time step of 0.02 was used to march the solution in time. Subiterations 

were used at each time step to eliminate the linearization errors. Initially about 15 

subiterations were needed at each time step but this number quickly reduced to 2 

for most of the time marching history. The computation was stopped after several 

periodic cycles were observed. It should be noted that for a true unsteady vortex 

shedding problem a dense grid (at least locally) is apparently essential to assure that 

the local small scale transient phenomena are resolved. An attempt to solve this 

problem on a coarser grid (81x51) failed due to lack of convergence after a long 

calculation time. 

Figure 5.18 shows the final four cycles of the lift coefficient having a constant 

amplitude of about 0.31 which is almost identical to the result reported by Visbal [78]. 

The Strouhal number [79] (can be thought as a nondimensional frequency) based on 

this is about 0.167. This result is within the experimental range 0.16 0.17 reported 

by Roshko [80]. The good agreement of the lift coefficient and Strouhal number with 



www.manaraa.com

119 

0.25 

0.05 

-0.15 

-0.35 
60 85 

Nondimensional time 

Figure 5.18: Time history of the lift coefficient for the final four cycles of the vortex 
shedding pattern, /2e=100 
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(a), ytieamlines 

Figure 5.19: Vortex shedding pattern for the final cycle, iîe=100, (a) streamlines, 
(b) vorticity contours 
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the data in the literature suggests that the present results are quantitatively accurate. 

Figure 5.19 shows qualitatively the results for streamlines and vorticity contours in 

the final cycle. The Mach number used was 0.2 and the energy equation was solved 

in this calculation. 

5.1.3 Shock-boundary layer interaction problem 

This case demonstrates the shock capturing capability of the present procedure. 

This case has been studied by several other researchers [8], [9] and a more detailed 

description of this problem can be obtained from their work. A schematic diagram 

of the flow configuration is shown in Fig. 5.20. The freestream Mach number is 2 

and Reynolds number is 0.296x10^. The reference length in the definition of this 

Reynolds number was based on the distance between the leading edge of the plate 

and the point at which the impinging shock intersected the plate. 

The strength of the impinging shock was strong enough to cause the laminar 

boundary layer to separate. The angle of this impinging shock was 32.6 degrees. An 

81x81 grid was used. The grid was uniform in the main flow direction and stretched in 

the cross stream direction with the minimum nondimensional grid increment of 1.0 x 

10~^ next to the wall. Figure 5.21 shows this grid layout. The computational domain 

began five grid points ahead of the leading edge of the plate, and top boundary was 

positioned far enough from the plate to allow the leading edge shock to pass through 

the outflow boundary. This treatment eliminated the need for using nonreflective 

boundary conditions at the top boundary. 

Freestream conditions were specified at the inlet boundary below the impinging 

shock. The postshock conditions were specified at the inlet boundary above the 
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Figure 5.20; Schematic of a shock-boundary layer interaction problem 
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Figure 5.21: 81x81 grid for shock-boundary layer interaction problem. 



www.manaraa.com

125 

impinging shock and along the top boundary. Extrapolation was used at the outflow 

boundary. Noslip conditions, zero normal pressure gradient and an adiabatic wall 

temperature were used at the wall. 

The results are shown for wall pressure and skin-friction distributions in Fig. 

5.22 and Fig. 5.23, respectively. The pressure contours are shown in Fig. 5.24. The 

above results compare reasonably well with the results in the literature [8], [81]-[83] 

and demonstrate the shock capturing capability of the present scheme. About a 

thousand iterations were required to obtain the present converged solution. 

For this supersonic case, smoothing was needed for all variables instead of pres­

sure only as for low Mach number cases. Clearly, the shock resolution obtained by 

this method can be improved, but the present results suggest that the formulation of 

the scheme is fundamentally correct and sufficient for capturing shocks. 

Most of the above calculations were performed on the Apollo DN 10,000 work­

station. The CPU time was approximately 0.0048 sec/node/iteration. 

5.2 Three-Dimensional Driven Cavity Results 

Before solving the more complicated three-dimensional unsteady liquid sloshing 

problems, the flow inside a 3-D driven cavity was used to evaluate the present nu­

merical algorithm for three-dimensional geometries. This case was used to test the 

accuracy and convergence property of the 3-D CSIP algorithm coupled with the ar­

tificial compressibility method for solving both steady and unsteady incompressible 

flows. A schematic diagram of the cubic cavity configuration is shown in Fig. 5.25. 

The incompressible equations without the gravity term in Eq. (2.16) were used 

for this cavity flow calculation. The boundary condition treatment was similar to its 
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Figure 5.22; Pressure coefficient, Cp (=p/poo)» distribution along the wall 
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Figure 5.23: Skin-friction coefficient, Cy (=2rwfJ îe) ,  distribution along the wall 
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Figure 5.24: Pressure contours for shock-boundary layer interaction problem 
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Figure 5.25: Schematic of a 3-D driven cavity How 

2-D counterpart. The noslip condition for three velocity components and the normal 

momentum equation were used at the wall of the cubic cavity. Second order central 

differences for all the spatial derivative terms and a first order forward difference 

for the time term were used. An artificial time derivative of pressure was added 

to the continuity equation to couple the continuity and momentum equations (see 

Eq. (4.15)). The continuity and momentum equations were then cast into the CSIP 

7-point formula and solved simultaneously for the unknowns tt, v, w and p. A flow 

of Re = 100 was investigated. For the steady state calculation, the convergence 

acceleration technique (see Eqs. (4.28) and (4.29)) was applied to obtain a faster 

convergence rate. Two grids, one 21x21x21 and the other 29x29x29 were used 

to study this flow. The distribution of the u velocity component along the vertical 

centerline at y = 1/2 plane is shown in Fig. 5.26. The agreement between the present 

solution and those obtained by Rosenfeld, Kwak and Vinokur [84] and Ku, Hirsh and 

Taylor [85] is good. Also shown in this figure is the effect of the grid refinement. It 
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Figure 5.26: Predicted u velocity distribution along the vertical centerline of a 3-D 
driven cavity at y=l/2 plane, Jle=100 
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required 145 iterations to obtain this converged solution for the 21x21x21 case and 

194 iterations for the 29x29x29 case. 

An impulsively started unsteady cavity flow was also studied to determine the 

unsteady convergence behavior of the 3-D CSIP procedure coupled with the artificial 

compressibility method. The Reynolds number was 100 and the grid was 21x21x21. 

Subiterations were required to obtain a true unsteady solution. A constant nondi-

mensional time step of 0.02 was used. For the first time step, 85 subiterations were 

required. The number of subiterations dropped to about 10 after 10 time steps and 

finally became 1 for most of the time steps. The time history for velocity and pressure 

at the center point of the cubic cavity are shown in Figs. 5.27 and 5.28, respectively. 

There are no unsteady 3-D cavity data available in the literature at this time for com­

parison with the present results. However, the results obtained from this unsteady 

calculation do indicate that the present CSIP procedure coupled with the artificial 

compressibility method is an effective method to simulate unsteady three-dimensional 

flows. It should be noted that for the above calculations, with regular grids and cen­

tral differences in the incompressible equations, a small amount of pressure smoothing 

using Eq. (5.6) was required to remove the spatial pressure oscillation. The compress­

ible form of the Navier Stokes equations was also used to solve this flow problem and 

it was found that the pressure oscillations were automatically removed. It confirmed 

again the favorable pressure smoothing properties of the present primitive variable 

CSIP formulation of the compressible form of equations. 
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Figure 5.27: Time evolution of the u velocity component at the center point of the 
3-D driven cavity, i?e=100 
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Table 5.3: Summary of test cases for the three-dimensional liquid sloshing flows 

Case Type of spin-up Liquid Rpm Arm (cm)® Re Fr  We 

1. LC.® sym.*^ Glycerin 60 0 21.9 0.51 207.6 
2. I.e. sym. Kerosene 60 0 2254.7 0.51 284.9 
3. Grd.^ sym. Glycerin 0-60 0 21.9 0.51 207.6 
4. Imp.® sym. Glycerin 60 0 21.9 0.51 207.6 

5. I.e. asym./ Glycerin 30 12.8 21.9 0.51 207.6 
6. I.e. asym. Glycerin 60 44.7 181.4 3.25 12002.1 

° Length of rotation arm. 
^Initially capped. 
^Symmetric. 
'^Gradually. 
^Impulsively. 
/ Asymmetric. 

5.3 Three-Dimensional Liquid Sloshing Results 

A schematic of this partially filled spherical container undergoing a rotating-

nutating motionJs shown in Fig. 2.1. Even though several features have been included 

in the present formulation in anticipation of the interaction with the space structure 

as mentioned in Chapter 1, the scheme for treating the liquid sloshing itself must be 

validated to the extent possible before interaction with the structure is considered 

further. Several cases for which the steady state solution is known analytically will 

be investigated and validated in the following sections. The several cases investigated 

are listed in Table 5.3 and the fluid properties used for these calculations are listed 

in Table 5.4. 



www.manaraa.com

135 

Table 5.4: Liquid properties ° at 20 degree C used 
for the three-dimensional liquid sloshing 
flows 

Liquid (iV/m) 
Glycerin 1.18x10"^ 1264.0 6.33x10"^ 
Kerosene 1.145x10"^ 767.2 2.8x10"^ 

^Source: Ref. [86]. 
^Kinematic viscosity. 
^Density. 
'^Surface tension coefficient. 

5.3.1 Axisymmetric spin-up 

Four axisymmetric spin-up problems were studied. The configuration of this 

first test case is shown in Fig. 5.29. The radius of the spherical container is equal 

to 6.4 centimeters and the rotation arm, is equal to 0. Due to the symmetry 

of this problem, the solution should be independent of position in the circumferen­

tial direction. This will provide one easy check on the validity of the code. As the 

spinning is initiated, the liquid and free surface begin to move relative to the con­

tainer and eventually reach a steady-state equilibrium condition in which solid-body 

rotation prevails. Computations were made for fluids of two different viscosities, one 

corresponding to glycerin and one corresponding to kerosene, and for three different 

types of spin-up, one corresponding to an impulsive spin-up, one corresponding to a 

gradual spin-up and another corresponding to an initially capped spin-up. The three 

types of spin-up are described as follows: 

1. Impulsive spin-up: At time zero, the spherical container half-filled with a 

liquid impulsively starts to rotate with a constant rotational speed about a 
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specified rotation axis (the axis of symmetry of the container, for the axisym-

metric spin-up case). The initial absolute velocity is zero everywhere except at 

the wall of the container. 

2. Gradual spin-up: At time zero, the spherical container half-filled with a 

liquid gradually starts to rotate with rotational speed starting from zero and 

smoothly increased to a desired constant value about a specified rotation axis. 

The initial absolute velocity is zero everywhere. 

3. Initially capped spin-up: Initially, the spherical container half-filled with a 

liquid has been spun about a specified rotation axis at a constant rotational 

speed and has reached a solid-body rotation. A cap covers the liquid surface 

keeping it level. At time zero, the cap is suddenly removed (or broken) and 

the liquid surface starts to rise (or drop) until another equilibrium position is 

reached. The initial absolute velocity is distributed according to the condition 

of solid-body rotation. 

For the same rotational speed of 60 rpm, the spin-up phenomena were found to be 

quite different for the two fluids and spin-up types. These four axisymmetric spin-up 

cases are described as follows. 

5.3.1.1 Initially capped spin-up; liquid: glycerin Initially, the spherical 

container half-filled with glycerin has been spun about its axis of symmetry in a 

rotational speed of 60 rpm and has reached a solid-body rotation. Since the liquid 

surface was covered by a cap, there was no free surface motion at all. The initial 
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Figure 5.29: The half-filled spherical container; at rest configuration 
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absolute velocity distribution is as follows: 

Vf> — 0  

Vq — ru> 

V2=0 

where Vr is the velocity component in the radial direction, Vg is the velocity compo­

nent in the circumferential direction, Vz is the velocity component in the direction 

normal to the previous two directions, r is the distance in the radial direction away 

from the line of symmetry and w is the rotational speed (60 rpm) (w.r.t. «23 It 

should be noted that the governing equations were expressed in terms of the relative 

velocity (relative to the final solid-body rotation) and therefore was actually 

used as the initial condition for velocities. The hydrostatic pressure distribution was 

initially specified. 

At time zero, the cap is suddenly removed (or broken) and the free surface starts 

to rise near the wall of the container and drop near the center of the free surface 

in response to the sudden change of the pressure field. The properties of glycerin 

are listed in Table 5.4. Some selected velocity vector plots illustrating the general 

flow pattern at different times are shown in Fig. 5.30. The results shown are in the 

^22 ~ 0 plane. The time shown on the figures has been nondimensionalized using 

a characteristic time based on the radius of the container and the rotational speed 

at the wall (equal to 0.1592 sec. in this case). The motion of this flow at different 

times can be seen from the velocity vectors in Fig. 5.30. The dotted lines inserted in 

Fig. 5.30 indicate the analytical steady state equilibrium (relative to the «2 fr»me) 

free surface position. The analytical steady state equilibrium free surface solutions 
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(a) r  = 0.81 (b) r = 1.62 

(c) T = 2.43 (d) T = 15.96 

Figure 5.30; Selected velocity vector plots at ®22=® plane for the axisymmetric 
initially capped spin-up of a spherical container half filled with glyc­
erin (the dotted line indicates the steady state analytical free surface 
position) 
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were derived by the present author and are listed in Appendix E. The velocities are 

largest near the free surface and are significantly smaller near the bottom of the 

container. As time goes on, the fluid continues to move and eventually passes (or 

overshoots) the equilibrium position. By time r = 1.62, magnitude of the flow has 

been reduced and the flow pattern has begun to reverse itself. This can be seen in 

Fig. 5.30b and more clearly in Fig. 5.30c. This flow continues to oscillate about the 

equilibrium position with diminishing amplitude until the new equilibrium position 

is reached at about r '= 15.96 in Fig. 5.30d (see also Fig. 5.32). It should be noted 

that the magnitude of the velocities in Fig. 5.30d has become very small as the final 

solid-body rotation is approached. The velocities shown here are relative to the solid-

body rotation expected at steady state, as pointed out in a previous section. The 

pressure contours are shown in Fig. 5.31. The numerical free surface position matches 

exceptionally well with the analytical solution. 

To permit a more detailed analysis of the flow pattern under this spin-up condi­

tion, the time histories of the free surface positions at the wall of the container and 

at the center of the free surface and the ®23 component of the velocity were recorded. 

Figure 5.32 shows the free surface position at the wall and at the center of the free 

surface for glycerin during the spin-up process. Probably due to the sudden removal 

of the cap, the free surface position oscillates about the equilibrium position. This 

oscillation, however, is damped out quickly by the viscosity of the fluid. Figure 5.33 

illustrates the same phenomena but shows the time evolution of the component of the 

velocity («23 component) normal to the free surface at the center of the container. 

These quantitatively results again show the effectiveness and accuracy (at least for 

the steady state solution) of the present numerical .algorithm. 
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Figure 5.32: The time history of the nondimensional free surface height for the 
axisymmetric initially capped spin-up of a spherical container half filled 
with glycerin 
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Figure 5.33: The time history of the «23 velocity component on the free surface at 
the center of rotation for the axisymmetric initially capped spin-up of 
a spherical container half-Ailed with glycerin 
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For this spin-up problem, the number of subiterations at the first time step was 

about 50 but then the number quickly dropped to less than 10 after 20 time steps and 

finally became 1 as the solution approached to the final steady state. A 11x11x11 

grid was used for the calculation. A nondimensional time step of 0.015 was used 

throughout  the  ca lcula t ion .  The  charac ter i s t ic  nondimensional  parameters ,  i Je ,  Fr 

and We, for this calculation are: 

Reynolds number. Re = 21.9 

Froude number, Fr = 0.51 

Weber number, We = 207.6 

The Reynolds number. Re,  and Weber number. We,  have been defined previously. 

The Froude number, Fr, is defined as follows: 

where h is the initial free surface depth and g the gravitational acceleration. 

5.3.1.2 Initially capped spin-up; liquid: kerosene The initially capped 

spin-up calculations were repeated with kerosene, a fluid whose kinematic viscosity 

is only about 1 % of that of glycerin (see Table 5.4). All rotation parameters were 

identical with the previous glycerin case. The final analytical equilibrium free surface 

position is expected to be the same as for the glycerin case. With this less viscous 

fluid, the general flow pattern was found to be quite similar to the previous case 

and will not be repeated here; however several interesting results deserve further 

discussion. 
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Figure 5.34: The time history of the nondimensional free surface height for the 
axisymmetric initially capped spin-up of a spherical container half filled 
with kerosene 
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Nondimensional time 

Figure 5.35: The time history of the «23 velocity component on the free surface at 
the center of rotation for the axisymmetric initially capped spin-up of 
a spherical container half-filled with kerosene 
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Figure 5.34 indicates the variation of the free surface position at the wall and 

tank center as a function of nondimensional time during the spin-up process for 

kerosene. Since the viscosity of kerosene is a factor of 100 less than that of glycerin, 

the free surface oscillations appear to damp out much more slowly than was observed 

for glycerin. This behavior is believed to be real although no experimental data have 

been found to date to clarify this point. The final computed steady state position 

of the free surface agrees reasonably well with the analytical solution. Figure 5.35 

shows the computed velocity component normal to the free surface at the center of 

the container as a function of time. Slowly damped oscillatory motion is evident. 

The spin-up with kerosene took about four times longer than that with glycerin to 

reach final steady state solid-body rotation (both cases used the same reference time 

and this was estimated from the plots shown previously). 

The kerosene calculations were made with the same grid as used to obtain the 

glycerin results. During the course of early computations, it was found that the free 

surface developed a saw-toothed profile of small amplitude in the radial direction 

which appeared to slow convergence at each time step. Due to much smaller viscosity 

of kerosene compared to glycerin, the effective Reynolds number of this flow is much 

higher than for the glycerin case. As a result, the saw-toothed profile might have been 

due to the use of central differences in the spatial derivative terms in the kinematic 

equation at the higher Reynolds number. If the use of central differences at high 

Reynolds numbers was the source of the problem, it could have been remedied by the 

use of a finer grid which, of course, would have increased the required computational 

effort considerably. Instead, a small amount of smoothing was added to remove this 

undesired profile and stabilize the calculation. The smoothing was of the following 
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form: 

pnew ^ pold ̂  (5.7) 

where a is the smoothing parameter, F is the free surface height function (see free 

surface kinematic equation) and Z2 is the radial direction. A value of a = 9 x 10~^ 

was used for this case. The second derivative in the expression above was represented, 

of course, in difference form. The characteristic nondimensional parameters for this 

calculation are: 

Reynolds number. Re = 2254.7 

Froude number, Fr = 0.51 

Weber number. We = 284.9 

It should be noted that the use of the smoothing in computing the free surface 

height function, F, for this calculation resulted in slightly less than a 1% loss of the 

initial total volume. Although this discrepancy was insignificant, further investigation 

on this subject is warranted in the future. We will discuss this effect further in another 

section. 

5.3.1.3 Gradual spin-up; liquid: glycerin As mentioned before, the high 

frequency free surface oscillations were possibly due to natural overshoots arising from 

the sudden removal of the cap during the spin-up process. To further understand this 

phenomenon, a third test for this configuration was conducted for glycerin again in the 

following way. The container was spun up with the rotational speed being gradually 

increased from 0 to 60 rpm by a sine function of time during the nondimensional time 

interval from zero to five. This rotational speed was specified as: 
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u) = 30(8in ^ + 1) rpm, for 0 < r < 5 

where ^ ^ 

and 

w = 60 rpm, for r > 5 

Figure 5.36 indicates the variation of the free surface position at the wall and 

tank center as a function of nondimensional time during the gradual spin-up process. 

The oscillatory phenomena in Fig. 5.32 disappeared and instead, a nonoscillatory 

ramp-up of the free surface at the wall and drop at the tank center was observed. 

This suggests that the oscillations are promoted by the abrupt nature of the sudden 

removal of the cap during the spin-up process. The final steady state free surface 

positions agree very well the analytical solutions. 

5.3.1.4 Impulsive spin-up; liquid: glycerin At time zero, the spherical 

container half-filled with glycerin impulsively started to rotate about its axis of sym­

metry. The initial absolute velocity was zero everywhere except at the wall of the 

container at which a rotational speed of 60 rpm was suddenly applied. Due to the 

use of the relative velocity in the formulation, a negative distribution of the solid-

body rotation velocity was specified everywhere initially except at the wall where a 

zero relative velocity was specified. A 11x11x11 grid was used agûn for this case. 

The free surface positions at the wall of the container and at the center of the free 

surface are shown in Fig. 5.37. No free surface overshoots were observed in this case. 

Probably due to being spun up impulsively, the flow reached the final steady state 

equilibrium position earlier than for the previous gradual spin-up case. The velocity 

component normal to the free surface at the center point of the free surface is shown 
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5.36: The time history of the nondimensional free surface height for the 
axisymmetric gradual spin-up of a spherical container half filled with 
glycerin 
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Figure 5.37: The time history of the nondimensional free surface height for the 
axisymmetric impulsive spin-up of a spherical container half filled with 
glycerin 
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Nondlmensional time 

Figure 5.38: The time history of the «23 velocity component on the free surface 
at the center of rotation for the axisymmetric impulsive spin-up of a 
spherical container half-filled with glycerin 
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in Fig. 5.38. Again the relative velocity must be zero (shown in the figure) as the 

solid-body rotation prevails. 

5.3.2 Asymmetric spin-up 

When the rotation arm, is nonzero, the solutions will no longer be symmetric. 

A schematic diagram for this type of spin-up is shown in Fig. 5.39. Two asymmetric 

cases were computed as a part of the present study with each corresponding to a 

different rotational speed and rotation arm as listed in Table 5.3. These two cases 

belong to the initially capped spin-up type as explained in the previous section. The 

liquid used was glycerin. These two cases are described in the next two sections. 

5.3.2.1 Case 1: w=30 rpm and ^^=12.8 cm The same container as 

before was half filled again with glycerin. It was initially covered by a cap and 

rotated in an orbit with a constant rotational speed under the condition of solid-

body rotation. At time zero, the cap was removed to allow the liquid surface to move 

under this spinning condition. The rotational speed was 30 rpm and the rotational 

arm, hi (xpi component of was 12.8 cm which was twice the radius of the 

container. Based on the above physical quantities, the characteristic nondimensional 

parameters are: 

Re = 21.9 

Fr = 0.51 

We = 207.6 

where the reference velocity, V^g^, was based on the rotational speed of the center 

of the container, i.e., = w&i. 
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Figure 5.39: Schematic of an asymmetric spin-up container half filled with glycerin 
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A 41x11x11 grid was used to compute this case with the 41 points being placed 

in the circumferential direction. A constant nondimensional time step of 0.01 was 

used for this calculation. At the first time step, 170 subiterations were required for 

convergence, but the number of subiterations required dropped rapidly and varied 

between 10 and 15 for most of the calculation. Compared with the previous ax 

isymmetric cases, this calculation was more difficult in two respects. First, the free 

surface was asymmetric and more grid points were required to resolve the solution in 

the circumferential direction. The solution would sometimes diverge suddenly if the 

resolution of the grid was not fine enough or if the grid distribution after the grid 

adaptation procedure contained a locally sharp slope. This unpleasant grid distribu­

tion is more severe near the wall. Second, more computational effort was required to 

obtain the solution at each time step. 

In this calculation, the value of (f>r in the the free surface tracking coordinates 

was no longer zero. Therefore, the present test case also served as a check for this 

transformation. For this case, the computation was carried out until the final solid-

body steady state solutions were obtained. 

In Fig. 5.40 a series of results showing the free surface position at different 

instants of time are presented. There is no symmetry for this case. The centrifugal 

force is larger at the right hand side (RHS) (far away from the spin axis) of the tank 

in Fig. 5.40 than at the left hand side (LHS) (closer to the spin axis). In response to 

this sudden change, the free surface begins to rise at the RHS and to depress at the 

LHS from its initial position. The free surface begins to distort and becomes a curved 

surface as can be seen in Figs. 5.40d-5.40f. It finally becomes a parabolic surface at 

the new equilibrium position at about r = 7.2. 
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Figure 5.40: Selected free surface plots for the asymmetric initially capped spin-up 
of a spherical container half filled with glycerin: case 1 
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Figure 5.40: (continued) 
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(a) r = 0.0 (b) r = 0.4 

(c) r = 0.8 (d) r = 1.2 

Figure 5.41: Selected velocity vector plots at ®22~® plane for the asymmetric ini­
tially capped spin-up of a spherical container half filled with glycerin: 
case 1 (the dotted line indicates the steady state analytical free surface 
position) 
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(f) r = 2.0 (e) r = 1.6 

(g) r = 2.4 (h) r = 7.2 

Figure 5.41: (continued) 
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Figure 5.42: Pressure contours for the asymmetric initially capped spin-up of a 
spherical container half filled with glycerin: case 1 (the dotted line 
indicates the steady state analytical free surface position) 
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Some selected velocity vector plots for different times in the X22~^ plane ate 

shown in Fig. 5.41 with the analytical equilibrium free surface position superimposed. 

The derivation of this analytical solution can be found in Appendix E. The fluid 

particles were trying to move toward to one side of the tank in response to the 

combination of the centrifugal and gravitational accelerations. The velocity of the 

fluid particles was still significant in the early stage of spin-up even near the bottom 

of the tank. The largest velocity vectors occurred near the free surface and gradually 

died down. The computation was carried out until the nondimensional time equaled 

7.2 at which time solid-body rotation prevailed. The final free surface position can 

be seen to agree fairly well with the analytical solution. The pressure contours for 

the final state of solid-body rotation are shown in Fig. 5.42. 

Again, the numerical steady state free surface positions at the wall of the con­

tainer were plotted against the analytical solution. Figure 5.43 shows the time evo­

lution of the free surface position at the wall for positions of 0 (LHS) and 180 (RHS) 

degrees (see also Fig. 5.39). This plot indicates the free surface rise at the RHS and 

drop at the LHS from its initial position (equal to zero for half full container). The 

small discrepancy between the current numerical solution for the free surface position 

and the analytical solution is probably due to a relatively coarse grid used in this 

calculation. Further study with a finer grid may help to resolve this discrepancy. 

Figure 5.44 shows the same evolution but for the rotation angle, which is the 

angle used to adjust the free surface tracking coordinates, zg coordinates, indicated 

in Fig. 2.3. It approaches the final analytical solution very closely. 

An animation tape based on the above results was made to visualize the liquid 

sloshing motion for the nondimensional time period between 0 and 4. This calcula-
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Figure 5.43: The time history of the nondimensional free surface height for the 
asymmetric initially capped spin-up of a spherical container half filled 
with glycerin: case 1 
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Figure 5.44: The time history of the angle, for the asymmetric initially capped 
spin-up of a spherical container half filled with glycerin: case 1 
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tion took about 22 hours of CPU time on the Apollo DN 10,000 workstation. This 

animation should contribute toward a better understanding of the liquid sloshing 

motion in a partially filled container. 

5.3.2.2 Case 2: w=60 rpm and /ij=44.7 cm This is the final test case 

for the present algorithm in this study, and it represents the most difficult case that 

has been run by the present author to date. The combination of the high rotational 

speed and the longer rotation arm in this case creates a centrifugal force which is 

about 14 times higher than that in the previous case. The radius of the container 

has been changed to 7.62 centimeters. Based on the above physical quantities, the 

characteristic nondimensional parameters are: 

Re = 181.4 

Fr = 3.25 

We = 12002.1 

where the definitions of the reference quantities are the same as the previous case. 

A 51x11x11 grid was used to compute this case with the 51 points being placed 

in the circumferential direction. A constant nondimensional time step of 0.01 was 

used for this calculation. Due to the extremely high centrifugal force in this case, the 

free surface was found to rise (drop) almost to the top (bottom) of the tank during 

the transient state and the motion of the free surface was more abrupt than that in 

the previous case. This abrupt free surface motion caused two kinds of numerical 

difficulties which resulted in the divergence of the solution suddenly after a long 

calculation time. 
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First, it was found that the free surface tracking angle, must be handled very 

carefully. As described earlier, the purpose of this tracking angle was to facilitate 

the present grid generation scheme and to keep the free surface height function, F, 

single-valued. The resulting effect of this tracking angle (and its time rate) was 

reflected in the governing equations. During the first attempts to compute this case, 

the free surface (and also <^r) was observed to oscillate in time after nondimensional 

time, T=1.8, and the time rate of change in ^ {<f>r) began to grow very rapidly. The 

magnitude of the additional terms (resulting from this rotation) in the governing 

equations finally became dominant and caused the solution to diverge. In order to 

reduce this effect, the angle, used to construct the transformation matrix, 5, was 

obtained by averaging angles from two time levels. This treatment smoothed out the 

<l>r and ^ and prevented the numerical instability. 

Second, it was found that the free surface exhibited a saw-toothed profile locally 

at about r=2.6 that began to propagate to neighboring points. This saw-toothed 

profile created a very unfavorable grid distribution (the interior grids tended to follow 

the bad grid distribution in the free surface) and resulted in divergence of the solution. 

Instead of using central differences to represent the spatial derivative terms in the 

free surface kinematic equation, a first-order upwind difference scheme was used to 

evaluate those spatial derivative terms. The saw-toothed profile was then removed. 

A series of results showing the free surface position at different instants of times 

are presented in Fig. 5.45. The final solid-body rotation was achieved at about T=34 

which corresponded to about one revolution of rotation. The velocity vectors and 

pressure contours are shown in Figs. 5.46 and 5.47, respectively. Again, the free 

surface position at the wall is shown in Fig. 5.48 and the rotation angle is shown 
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in Fig. 5.49. The number of subiterations at each time step was also recorded and 

is shown in Fig. 5.50. The sudden increase of subiterations for the nondimensional 

time between 3 and 5 was due to the oscillation of the free surface angle as described 

above. For this case the total CPU time was about 58 hours on the Apollo DN 10,000 

workstation. 

It can be seen in Figs. 5.46 and 5.47 that the steady state free surface position 

did not match with the analytical solution very well. The volume of the liquid was 

not conserved. About a 10% discrepancy in volume was estimated. The cause of 

this mass conservation problem had not been conclusively determined at the time 

this dissertation was prepared. However, it is suspected that the discrepancy can 

be attributed to the use of the upwind differencing for the free surface kinematic 

equation. This point is currently under study. 
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(a) r = 0.0 (b) r = 0.9 

(c) T = 1.8 (d) r = 2.7 

Figure 5.45: Selected free surface plots for the asymmetric initially capped spin-up 
of a spherical container half filled with glycerin: case 2 



www.manaraa.com

168 

A\V\ 

(c) r = 6.3 (d) r = 8.1 

Figure 5.45: (continued) 
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(c) T = 17.1 (d) r = 34.2 

Figure 5.45: (continued) 
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Figure 5.46: Selected velocity vector plots at 3:22=0 plane for the asymmetric ini­
tially capped spin-up of a spherical container half filled with glycerin: 
case 2 (the dotted line indicates the steady state analytical free surface 
position) 
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(a) r = 3.6 (b) r = 4.5 

(c) r = 6.3 (d) r = 8.1 

Figure 5.46: (continued) 
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(d) r = 34.2 (c) r = 17.1 

Figure 5.46: (continued) 
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(c) r = 1.8 (d) r = 2.7 

Figure 5.47: Selected pressure contour plots at ®22~® plane for the asymmetric 
initially capped spin-up of a spherical container half filled with glycerin: 
case 2 (the dotted line indicates the steady state analytical free surface 
position) 
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(a) r = 3.6 (b) r = 4.5 

(c) r = 6.3 (d) r = 8.1 

Figure 5.47: (continued) 
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(c) r = 17.1 (d) r = 34.2 

Figure 5.47: (continued) 
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Figure 5.48: The time history of the nondimensional free surface height for the 
asymmetric initially capped spin-up of a spherical container half filled 
with glycerin: case 2 
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Figure 5.49: The time history of the angle, <f>r, for the asymmetric initially capped 
spin-up of a spherical container half filled with glycerin: case 2 
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Figure 5.50: The time history of the number of subiterations at each time step for 
the asymmetric initially capped spin-up of a spherical container half 
filled with glycerin: case 2 
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0. CONCLUDING REMARKS 

0.1 Conclusions 

A coupled solution strategy for the time-dependent two and three-dimensional 

Navier-Stokes equations was developed. Both compressible and incompressible flows 

have been considered. The present solution algorithm was also applied to solve flows 

with free surfaces. 

It appears that this algorithm for solving the two-dimensional compressible form 

of the Navier-Stokes equations is effective for Mach numbers ranging from the incom­

pressible limit (Moo^O.Ol) to supersonic. The approach employs the strong conser­

vation law form of the governing equations but uses primitive (u, v, p, T) variables 

rather than the more traditional conserved (/», pu, pv, Ei) variables as unknowns. 

This choice of variables simplifies the treatment of viscous terms and enhances ef­

fectiveness at low Mach numbers by allowing the density to be removed from the 

difference equations. A coupled modified strongly implicit procedure was used to 

efficiently solve the Newton-linearized algebraic equations. Generally, it was found 

that smoothing was not needed to control spatial oscillations in pressure for subsonic 

flows despite the use of central differences. Dual time stepping was found to fur­

ther accelerate convergence for steady flows. Generally good agreement between the 

predictions and results in the literature was observed for several test cases includ­
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ing steady and unsteady low Mach number internal and external flows and a steady 

shock-boundary layer interaction flow on a flat plate in a supersonic stream. 

For three-dimensional liquid sloshing flows, the solution strategy for the two-

dimensional compressible equations coupled with the artificial compressibilty method 

forms a unified solution algorithm which solves for the primitive variables in a coupled 

manner. The pressure Poisson equation was not required in this procedure; instead, 

the continuity equation was directly coupled with the momentum equations and 

the pressure information was obtained along with the velocity field directly. This 

avoids the complexity of deriving and solving the pressure Poisson equation for the 

complicated three-dimensional problem encountered in this study. It appears that 

this procedure can handle the three-dimersional unsteady flows very efficiently (with 

only a few subiterations needed for most of the time steps) even in the presence of a 

free surface which requires that the flow field be computed in a new domain at every 

time step. Six diflferent kinds of spin-up problems have been computed with this 

algorithm in three-dimensional configurations, including two axisymmetric initially 

capped spin-up cases with glycerin and kerosene, one axisymmetric gradual spin-up 

case with glycerin, one axisymmetric impulsive spin-up case with glycerin and two 

asymmetric initially capped spin-up cases with glycerin under different rotational 

conditions. 

The SIP method demonstrated very good convergence properties for solving the 

algebraic system of equations. Its strongly implicit nature provides a faster conver­

gence rate and enhances the robustness of the present algorithm. However, despite 

the positive features of this method, a large amount of storage is required, especially 

for a three-dimensional block matrix system. Whether the storage disadvantage will 
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offset its favorable convergence property and robustness depends on the availability 

of computer storage. According to the present author's experience on the Apollo DN 

10,000 workstation, SIP is a very suitable candidate for solving a coupled system 

in two dimensions with a reasonably dense grid; however, for a three-dimensional 

coupled system, it required considerable amount of computer memory even with a 

moderate grid (say 41x41x41). Such storage requirements are expected to be less of 

a problem in the future since the trend is toward providing larger and larger memory 

capability for computers. 

6.2 Recommendations for Future Research 

Although the present solution algorithm has been shown to be capable of han­

dling different types of two and three-dimensional flow problems, several areas still 

deserve further study. They are described as follows. 

1. The pressure smoothing capability of the centrally-differenced compressible 

form of the Navier-Stokes equations for low Mach number nearly incompress­

ible flows deserves further investigation. In the present study, the success of 

the pressure smoothing was only demonstrated for two and three-dimensional 

cavity flows. The same procedure should be tested for incompressible flow prob­

lems with different geometries in order to further evaluate the success of this 

concept. 

2. The extension of the present algorithm to an upwind scheme would be desir­

able in the future. The problem related to the slow convergence for the high 

Reynolds number cases in the two-dimensional compressible calculations may 
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be due to the use of the central differences. A type of upwind scheme similar to 

that described in the work by Pan and Chakravarthy [21] would be a candidate 

for extension to the present scheme. 

3. The cases presented in this study for the three-dimensional liquid sloshing simu­

lation were obtained with a relative coarse grid. Finer grid results are definitely 

desirable. 

4. The mass conservation problem arising in some of the three-dimensional calcu­

lations deserves further study. 

5. In this study, only laminar flows were considered. The implementation of tur­

bulence modeling would allow the present scheme to compute turbulent flows. 

This extension is nontrivial, and would provide a challenging task in the future. 

6. Vectorization of the present algorithm, especially for the SIP recursive formula, 

will greatly increase the efficiency of the present algorithm on vector machines. 
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8. APPENDIX A: DERIVATION OF THE TRANSFORMATION 

MATRIX A AND S 

8.1 Transformation Matrix A 

Each of the three successive rotations (see Fig. 2.2) can be expressed as: 

®0 = [^Oll^l 

h = [^Dl]®l 

®1 = Moi)®i 

where [^qiI ' (-^Ol) [^Qll the transformation matrices with respect to each 

axis rotation. These three transformation matrices are: 

[•^011 = 

[^Ol] 

[^Oll = 

—S^ 0 

53 Cg 0 

0 0 1 

C2 0 52 

0 1 0 

—$2 0 C2 

1 0 0 

0 Cj 

0 Si Ci 
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where = cos^j- and S( = sinip^. 

Therefore, the relationship between coordinates xg and can be expressed as: 

®0 = [-^OlH^OlH^Ol]®! 

= [A]xi  

The final transformation matrix [^4] is: 

C253 515253 + C1C3 Ci5253-5I(73 

—52 5^02 C1C2 

8.2 Transformation Matrix 5 

The transformation for this rotation can be seen in Fig. 2.3. The resulting matrix 

is: 

[5] = 

cos <f>r 0 — sin <f>r 

0 1 0 

sin <f)r 0 cos <f>r 
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9. APPENDIX B: UNIT NORMAL VECTOR AT THE WALL OF 

THE CONTAINER 

In the present formulation the container wall coincides with the z — 

surface (see Fig. 9.1). Letting n be a unit vector normal to the wall, then it can be 

expressed as: 

-, _ V^2 \ 
" |Vz2l 

Since Vzg is equal to e3i»j2,l + ®32^2,2 + ®33*?2,3' *ke expression for n can be 

written as: 
^ _ ^31%,1 + ê32»?2,2 + . 

or 

„ _ ^2,1 , 
* ^^2 .)l/2^a( waff 

where 631, 632 and 633 are the unit base vectors in the «3^, 3:32 and «33 directions 

respectively. 
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Container wall 

Figure 9.1: Notation for the unit normal vector at the wall of the spherical container 
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10. APPENDIX C: UNIT NORMAL VECTORS AT THE FREE 

SURFACE 

At the free surface, the unit normal vector (see Fig. 10.1) can be expressed as: 

*73,* V 

* ^^2 ,^1/2'®^ /ree surface 

The two unit tangential vectors can be derived from the condition of orthogonality 

and the requirement of unit length. They are expressed as: 

f, = ^31 - G32« 
' (1 +«2)1/2 

and 
, _ + a^) _ 

^ (1 + «2+^2,1/2,I^.„2)1/2 

where êgg and êgg are the unit base vectors in the ^32 and «33 directions 

respectively and a = ^ and = ^. 

The three curvature terms are: 

d^F 

«1 = —^ 

d^F 
9x^2 
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Frae surface 

Figure 10.1: Notation for the unit vectors at the free surface 

d'^F ^ d'^F 

Central differences were used to evaluate the spatial derivatives in the above three 

curvature terms. 
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11. APPENDIX D; EQUIVALENCE OF THE JACOBIAN AND 

NEWTON LINEARIZATION METHODS 

The Jacobian method is often used to linearize the compressible Navier Stokes 

equations [7]. This method usually evaluates the coefficient matrices at the previous 

time level. On the other hand, the Newton method [7] usually evaluates the coefficient 

matrices at the previous iteration level of the current time time step. It was found that 

if the conservative variables were used as the primary variables, both linearization 

schemes gave equivalent forms of the algebraic equations. Both schemes would be 

identical if the coefficient matrices were evaluated at the previous time level (instead 

of previous iteration level of the current time step) for the Newton method. However, 

both schemes could give a different form of the algebraic equations, depending on how 

the conservative variables were converted to the primitive variables, if the primitive 

variables were used. The conclusion is that both linearization methods are equivalent 

and will become identical if the Newton method is used in the linearization required 

to convert the conservative variables to the primitive variables, and if the coefficient 

matrices are evaluated at the same level for both schemes. This equivalence can be 

demonstrated as follows. 

The two-dimensional Euler equations are used here to demonstrate the equiva­

lence of the present Newton linearization method and the Jacobian matrices method. 
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To be consistent with the equations used in the present work, an isothermal condition 

with p=pl3 relation was assumed in the Euler equations without any loss of gener­

ality. The two-dimensional Euler equations with the above conditions in Cartesian 

coordinates are given by: 
d Q ^ d E  d F  
dt dx dy 

(11.1) 

where 
/ \ ( \ ( \ 

p pu pv 

Q = pu , E = pu^ +/3p , F = puv 

J , J ^ p v ^  + / 3 p  ^  

A forward difference in time and central diff'erence in space (FTCS) scheme will 

be used for all the following difference forms. The FTCS scheme was chosen to easily 

demomstrate the present derivation only. Other differencing schemes certainly can 

be used as well. 

11.1 Conservative Variables 

11.1.1 Jacobian method 

When the FTCS scheme is applied to the above equation with = l(for 

simplicity), the finite-difference form is given as 

- EI,><??-+/,;• - + ,•<??//,y = Qli 

(11.2) 
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where 

A = 
dQ 

0 
,2 

0 

0 

\rq "»1 ^1 

B = 
Op 

0 0 1 
ma mg 

"mj "»1 "»1 

- 4 + ^  0  
nj| mj 

are the Jacobian matrices. The superscript n represents the previous time level. The 

mj, mg and mg are the conservative variables in Q vector, i.e., mi=p, m2=jnt and 

m^=pv. 

11.1.2 Newton method 

If a Newton linearization method is used to linearize the convective terms in E 

and F vectors, a typical nonlinear term in the third element of E is given as: 

m2m^ 

mi mî mi mi 

where mj, m2 and mg are the values at the previous iteration level. After all the 

terms are linearized in the same way as above and the FTCS scheme is applied to the 

Euler equations, the final difference form, after collecting all terms in front of each 

unknown, is given as: 

(11.3) 

where the superscript k indicates the previous iteration level. Equation (11.2) and 

Eq. (11.3) are identical if k is equal to n. This means if no subiteration is used at 

each time step. Therefore, the final difference form derived from the Newton method 

can he obtained directly from Eq. (11.2) by evaluating the Jacobian matrices A and 
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B in the previous iteration level k instead of the previous time level n. In many 

low speed flow problems, subiterations are usually desirable and Eq. (11.3) is more 

appropriate to use. 

11.2 Primitive Variables 

11.2.1 Jacobian method 

One more step is needed to convert the conservative variable vector, to a 

primitive variable vector, Q, if a primitive variables approach is desired. There are 

different ways of conversion (or linearization). The way we choose here is a Newton 

method and it is expressed as: 

Q~CQ-QS (11.4) 

where 
( \ / \ 

p 0 1 0 0 

Q = u , Qo = pu u P 0 

\ " / / 
V 0 P 

The QQ term is evaluated at the previous time level, n, to be consistent with the Ja­

cobian time linearization. After substituting Eq. (11.4) into Eq. (11.2), the following 

difference form is obtained for the primitive variables: 

% + - %,;-l + ^BtJ+l  + 
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where 

u p 0 V O P  
À  =  A C  =  + /3 2pu 0 ,  B  =  B C  =  uv pv pu 

uv pv pu V (3 0 2pv 

/ \ ( \ 
pu pv 

QA  =  A Q Q = 2pu^ ,  Q F F  =  B Q Q 2puv 

^ 2imt> ^ 
\ , 

11.2.2 Newton method 

If the Newton method is applied to linearize the nonlinear terms such as 

~ up 4- ̂  — pû^ 

puv ~ uvp + pvu + pûv — 2pûv, 

pv^ ~ û^p + 2pûu — 2pû^, 

and the FTCS scheme is used again, then after collecting all coefficients in front of 

each unknown, the final difference form is given as: 

+ Q&i+lU'-

where the superscript k indicates the previous iteration level. The above equation is 

identical to the Eq. (11.5) except that all the coefficients in the left-hand side and 

most quantities in the right-hand side are evaluated at the previous iteration level, 

k. By simply marching in time without subiterations at each time step, the Newton 

method is identical to the Jacobian time linearization method; however, the former 

provides more flexibility in subiterations than the later. 
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12. APPENDIX E: DERIVATION OF THE STEADY STATE 

ANALYTICAL FREE SURFACE POSITION 

The analytical free surface position for two kinds of spin-up problems will be 

derived in this appendix. 

12.1 Axisymmetric Spin-Up 

When solid-body rotation prevails, the following equations can be derived from 

a force balance: 

where Q is the rotational speed in the z direction. 

The pressure solution can be obtained by direct integration from the above three 

equations. The solution for pressure is: 

p = ~ pgz + C 

The constant G can be determined by assuming that the pressure at the free surface 

is equal to the atmospheric pressure, pa> The final form of the pressure solution is: 

P  -  P a  =  - p g i s - z m )  
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Pa 

Figure 12.1: Notation for the free surface of the spherical container 

where zm is the free surface height at the center point (see Fig. 12.1). 

Letting p = pa in the above equation, the free surface position can be written as a 

function of r as: 

12.1.1 Determination of zm 

If the spherical container is initially partially filled by a fluid at a height of ZQ, 

then the volume of fluid can be expressed as: 

^0 ~ ~ ~ ^0)^(2^ + zo) 

When the final solid-body rotation prevails, the volume of fluid can be expressed as: 

Va = - ( R -
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By equating Vg = Vj, we can obtain the following nonlinear equation in terms of the 

unknown zj^x 

where A = and B = {R — Z{^){2R + zg). 

The Newton-Raphson method was used to solve for the unknown zj^. Once zj^is 

calculated, zm can be obtained from: 

«m = «jif - - «If) 

12.2 Asymmetric Spin-Up 

The same procedure as given above can be used to derive the equation for the 

free surface height for the asymmetric spin-up case. The equation for the free surface 

height is: 

2 = —( + hr cos B) zm 
9  ̂

where h is the length of the rotational arm. 

The constant zm has to be determined by mass conservation using the same procedure 

as above. However, in this case there is no analytical form of the volume of fluid for 

the final solid-body rotation. It has to be determined numerically as suggested in the 

following procedure. 

12.2.1 Determination of zm - secant method 

Let ZQ and zj be two initial guesses for the solution zm- Then two fluid volumes 

corresponding to these two initial guesses can be determined, say VQ and V\. If the 
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initial volume of fluid is designated as then the following secant method can be 

used to iterate to obtain the solution for zm which satisfies mass conservation: 

f  =  Vi-Vi  

/' = (n - Vo)/(n - to) 

2netv = «1 — ///*' 

12.2.2 Determination of the volume of fluid 

The following procedures were used to determine the volume of fluid once a zm 

had been guessed: 

1. Find the coordinates (rw,zw) of the free surface at the wall for each 0 

direction from the solution of the following two equations: 

z  =  — +  h r c o s d )  +  Z m  
9 I 

and 

+ «2 _ 1 

This will involve using the Newton-Raphson method to solve the resulting 

nonlinear equations. 

2. Find the area and centroid of the area of the fluid for each B direction 

by the trapezoidal rule. 

3. Calculate the volume of fluid by summing up all areas for each B 

direction by the trapezoidal rule. 
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13. APPENDIX F: FORMULA FOR CALCULATING [L] AND [U] 

MATRICES FOR SIP METHOD 

13.1 Two-Dimensional 9-Point Equations 

(13.1) 

~ - «/t,i-l/»4-l,;-l)~^ (13-2) 

(13.4) 

% j  =  ̂ I j  -  -  ' : , J % + l j - l  -  4 , ;  

+«(2<^t,j + 4>i^j + (13.5) 

Aj = (^w)"^(^w - - (:i,/i+lj-l - 2«(4j + (13-6) 

= (®i,i)~^(^f,i - 4,/i-lj) (13.7) 

Ki = (^ij)"^(4j - - «4j) (13.8) 

~ (^%,j) (^tj) (13.9) 

where a is called partial cancellation parameter which is used to reduce the effect of 

the auxiliary matrix [P]. One can also think it is convergence acceleration factor. Its 
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value should range between 0 and 1. For the present coupled system of equation, a 

is usually chosen between 0 and 0.25. 

The definition of <f>j j, <f>^ j and j are expressed as follows: 

= \j9i-lj-l (13.11) 

= %jW,j- l  (13-12) 

(13-13) 

13.2 Three-Dimensional 7-Point Equations 

= ^i,j,ib(l + "2'»i,j>-l + «3»*i,j,jfe-l) ^ (13.14) 

= ^?,i,ifc(l + + «I'^tJ-l,*:)"^ (13-15) 

^i,j,k ~ A',j,a(1 "2^1—Ijj'jfc "l^i—IjjA;) (13.16) 

^hhk = ̂ lj,k + + «3(^t-,j,A: + 4,;,A,) 

+«l(^i-,j> + 4,j,t) - - M,jyi,j-l,k - H,j,k\j,k-\ (13-17) 

h,j,k = %lk^^lj,k - '^2<l>lj,k - «l'^?,j,&) (13-18) 

= %jM^i , j ,k  -  ̂3^y,& - «l^itj,fc) (13-19) 

\hk = ^^A;(4,;,& - ®2^?,j,jb " (13-20) 

where aj, ag and ag are the partial cancellation parameter in the ®, y and z directions 

respectively, which are used to reduce the effect of the auxiliary matrix [f]. One can 



www.manaraa.com

207 

also think it is convergence acceleration factor. Its value should range between 0 and 

1. For the present coupled system of equation, 03 and 03 are set to be equal for 

simplicity. Usually 0.5 was used for the present three-dimensional calculations. 

The definition of '^Xhk exP'CMed as 

follows: 

(13.21) 

(13.22) 

= ii,i,kh,j~i,k (13.23) 

(13.24) 

•I'hk (13.25) 

*li,k (13.26) 

The above formulas can be used to solve both scalar and coupled equations. For a 

scalar equation, they can be used as the form given in the above formulas. For coupled 

equations, the extension is very straightforward. All the quantities in the formulas 

become 4x4 matrices (say for four coupled equations in the present study). The 

quantity 1 becomes an identity matrix and a becomes a diagonal matrix with a being 

the diagonal element. All multiplications become matrix-matrix multiplications. 
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